
Getting into Reinforcement Learning

Cem Subakan

Mila

March 26, 2020

1 / 57

Goal of this presentation

I To spell out the fundamentals of Reinforcement Learning Setup (MDP),
using a simple example.

I In very high level, talk about several solutions.
I Value iteration, Policy Evaluation, Monte Carlo RL, SARSA, Q-learning,

DQN, Reinforce, Reinforce with baseline, A2C.

I So, no advanced Reinforcement Learning!!!

2 / 57

Goal of this presentation

I To spell out the fundamentals of Reinforcement Learning Setup (MDP),
using a simple example.

I In very high level, talk about several solutions.
I Value iteration, Policy Evaluation, Monte Carlo RL, SARSA, Q-learning,

DQN, Reinforce, Reinforce with baseline, A2C.

I So, no advanced Reinforcement Learning!!!

2 / 57

Table of Contents

The bandit problem

Reinforcement Learning
Introduction
Formal Definition of RL control problem
Learning in an MDP
Model Free Methods

Reinforcement Learning with Function Approximation (Deep RL)
DQN
Policy Gradient Methods

3 / 57

The multi-armed bandit problem

I We have K choices at a given time t. We denote this with
At ∈ {1, . . . ,K}.

I Each choice has an associated reward. That is, the choice At has an
associated reward Rt .

I The ultimate goal is to maximize the sum of rewards:

max
A1:T

T∑
t=1

Rt(At)

4 / 57

Dependency modeling of the bandit problem

A1 A2
. . . AT

R1 R2
. . . RT

5 / 57

An example bandit problem

I Below is p(Rt |At) ∀t:

I p(Rt |At) = N (µ(At), σ
2)

6 / 57

How do we solve the bandit problem

I We can just count:

QT (a) :=

∑T−1
t=1 Rt1[At=a]∑T−1
t=1 1[At=a]

and then set At = arg maxa QT (a).

I The Incremental Version:

Qt+1 = Qt +
1

t
[Rt − Qt]

I Notice the form:

NewEst.← OldEst.+ StepSize[Target − OldEstimate]

7 / 57

How do we solve the bandit problem

I We can just count:

QT (a) :=

∑T−1
t=1 Rt1[At=a]∑T−1
t=1 1[At=a]

and then set At = arg maxa QT (a).

I The Incremental Version:

Qt+1 = Qt +
1

t
[Rt − Qt]

I Notice the form:

NewEst.← OldEst.+ StepSize[Target − OldEstimate]

7 / 57

How do we solve the bandit problem

I We can just count:

QT (a) :=

∑T−1
t=1 Rt1[At=a]∑T−1
t=1 1[At=a]

and then set At = arg maxa QT (a).

I The Incremental Version:

Qt+1 = Qt +
1

t
[Rt − Qt]

I Notice the form:

NewEst.← OldEst.+ StepSize[Target − OldEstimate]

7 / 57

An Incremental Solution for the bandit problem

8 / 57

Testing the simple bandit

9 / 57

Contextual bandits

S1 S2 . . . S4

A1 A2
. . . AT

R1 R2
. . . RT

I The context changes, and consequently the reward distribution changes
also.

I We have an additional challenge of associating the rewards with the
context. This setup is known as associative search also.

10 / 57

Table of Contents

The bandit problem

Reinforcement Learning
Introduction
Formal Definition of RL control problem
Learning in an MDP
Model Free Methods

Reinforcement Learning with Function Approximation (Deep RL)
DQN
Policy Gradient Methods

11 / 57

Table of Contents

The bandit problem

Reinforcement Learning
Introduction
Formal Definition of RL control problem
Learning in an MDP
Model Free Methods

Reinforcement Learning with Function Approximation (Deep RL)
DQN
Policy Gradient Methods

12 / 57

Example Tasks

13 / 57

Example Tasks (Games)

14 / 57

Another Example

15 / 57

Table of Contents

The bandit problem

Reinforcement Learning
Introduction
Formal Definition of RL control problem
Learning in an MDP
Model Free Methods

Reinforcement Learning with Function Approximation (Deep RL)
DQN
Policy Gradient Methods

16 / 57

Full Reinforcement Learning

S0 S1 S2 . . . ST

A0 A1 A2
. . . AT

R1 R2
. . . RT

I S1:T – states

I A1:T – actions

I R1:T – rewards

St+1|St ,At ∼ p(St+1|St ,At)

Rt+1|At , St ∼ p(Rt+1|St ,At)

At |St ∼ π(At |St),

Note the Markovian assumption! Furthermore:

St+1|St ,At ∼ p(S ′|S ,A), ∀t
Rt+1|At , St ∼ p(R ′|S ,A), ∀t

At |St ∼ π(A|S),∀t

17 / 57

Full Reinforcement Learning

S0 S1 S2 . . . ST

A0 A1 A2
. . . AT

R1 R2
. . . RT

I S1:T – states

I A1:T – actions

I R1:T – rewards

St+1|St ,At ∼ p(St+1|St ,At)

Rt+1|At , St ∼ p(Rt+1|St ,At)

At |St ∼ π(At |St),

Note the Markovian assumption! Furthermore:

St+1|St ,At ∼ p(S ′|S ,A), ∀t
Rt+1|At , St ∼ p(R ′|S ,A), ∀t

At |St ∼ π(A|S),∀t 17 / 57

What do we learn in Reinforcement Learning

I The main goal is to learn a policy π(A|S), so as to maximize future
rewards.

I We usually don’t know the environment dynamics
p(St+1,Rt+1|St ,At) = p(St+1|St ,At)p(Rt+1|St ,At). But we are typically
able to interact with the environment to sample episodes:
(S0,A0,R0), (S1,A1,R1), . . . , (ST ,AT ,RT). (That is, if we have access to
a simulator)

I Some approaches first learn the environment dynamics and then do RL.
(Model Based RL)

I Another family of approaches don’t learn the environment, but rather
interact with it. (Model Free RL)

18 / 57

What do we learn in Reinforcement Learning

I The main goal is to learn a policy π(A|S), so as to maximize future
rewards.

I We usually don’t know the environment dynamics
p(St+1,Rt+1|St ,At) = p(St+1|St ,At)p(Rt+1|St ,At). But we are typically
able to interact with the environment to sample episodes:
(S0,A0,R0), (S1,A1,R1), . . . , (ST ,AT ,RT). (That is, if we have access to
a simulator)

I Some approaches first learn the environment dynamics and then do RL.
(Model Based RL)

I Another family of approaches don’t learn the environment, but rather
interact with it. (Model Free RL)

18 / 57

What do we learn in Reinforcement Learning

I The main goal is to learn a policy π(A|S), so as to maximize future
rewards.

I We usually don’t know the environment dynamics
p(St+1,Rt+1|St ,At) = p(St+1|St ,At)p(Rt+1|St ,At). But we are typically
able to interact with the environment to sample episodes:
(S0,A0,R0), (S1,A1,R1), . . . , (ST ,AT ,RT). (That is, if we have access to
a simulator)

I Some approaches first learn the environment dynamics and then do RL.
(Model Based RL)

I Another family of approaches don’t learn the environment, but rather
interact with it. (Model Free RL)

18 / 57

What do we learn in Reinforcement Learning

I The main goal is to learn a policy π(A|S), so as to maximize future
rewards.

I We usually don’t know the environment dynamics
p(St+1,Rt+1|St ,At) = p(St+1|St ,At)p(Rt+1|St ,At). But we are typically
able to interact with the environment to sample episodes:
(S0,A0,R0), (S1,A1,R1), . . . , (ST ,AT ,RT). (That is, if we have access to
a simulator)

I Some approaches first learn the environment dynamics and then do RL.
(Model Based RL)

I Another family of approaches don’t learn the environment, but rather
interact with it. (Model Free RL)

18 / 57

Example Reinforcement Learning Setup

I States:
S ∈ {((x , y), d),where x , y ∈
{1, 2, 3}, d ∈ {W ,N,E ,S}}.
Examples: ((1, 1), E), ((3, 3), S)

I Actions: A ∈
{turnleft, turnright, goforward}.

I Rewards: 1− t ∗ c each time we
get to green square.

I Interactive Demo

19 / 57

Example Reinforcement Learning Setup

I States:
S ∈ {((x , y), d),where x , y ∈
{1, 2, 3}, d ∈ {W ,N,E ,S}}.
Examples: ((1, 1), E), ((3, 3), S)

I Actions: A ∈
{turnleft, turnright, goforward}.

I Rewards: 1− t ∗ c each time we
get to green square.

I Interactive Demo

19 / 57

Action-State Transition tensor

I State transition:
p(S ′ = (1, 1,N)|S = (1, 1,E),A = turnleft) = 1
p(S ′ = (2, 1,E)|S = (1, 1,E),A = forward) = 1
p(S ′ = (2, 1,N)|S = (1, 1,E),A = forward) = 0
p(S ′ = (3, 3,E)|S = (1, 1,E),A) = 0, ∀A

I Reward distribution:
p(R ′ = 0|S = (1, 1,E),A) = 1, ∀A
p(R ′ = 1−c ∗ t|S = (3, 2, S),A = goforward) = 1

I Policy:
π(At |St), we want to learn one so that the
rewards are maximized!

20 / 57

Action-State Transition tensor

I State transition:
p(S ′ = (1, 1,N)|S = (1, 1,E),A = turnleft) = 1
p(S ′ = (2, 1,E)|S = (1, 1,E),A = forward) = 1
p(S ′ = (2, 1,N)|S = (1, 1,E),A = forward) = 0
p(S ′ = (3, 3,E)|S = (1, 1,E),A) = 0, ∀A

I Reward distribution:
p(R ′ = 0|S = (1, 1,E),A) = 1, ∀A
p(R ′ = 1−c ∗ t|S = (3, 2, S),A = goforward) = 1

I Policy:
π(At |St), we want to learn one so that the
rewards are maximized!

20 / 57

Action-State Transition tensor

I State transition:
p(S ′ = (1, 1,N)|S = (1, 1,E),A = turnleft) = 1
p(S ′ = (2, 1,E)|S = (1, 1,E),A = forward) = 1
p(S ′ = (2, 1,N)|S = (1, 1,E),A = forward) = 0
p(S ′ = (3, 3,E)|S = (1, 1,E),A) = 0, ∀A

I Reward distribution:
p(R ′ = 0|S = (1, 1,E),A) = 1, ∀A
p(R ′ = 1−c ∗ t|S = (3, 2, S),A = goforward) = 1

I Policy:
π(At |St), we want to learn one so that the
rewards are maximized!

20 / 57

State Transition-Action Tensor (Action=Forward)

1, 1 2, 1 3, 1

1, 2 2, 2 3, 2

1, 3 2, 3 3, 3

N

W

W

W

S S S

E

E

E

NNE

W

E

W

E

W

E

W

E

W

E

W

E

W

S N

If there is an arrow, that means the corresponding entry is 1.
21 / 57

State Transition-Action Tensor (Action={Left,Right})

N

W E

S

left

left left

left

right right

rightright

The coordinates stay the same, but the orientation (N, E, S, W) change.

22 / 57

Reward-State-Action Tensor

1, 1 2, 1 3, 1

1, 2 2, 2 3, 2

1, 3 2, 3 3, 3

E, F, R=1− c ∗ t

S, F, R=1− c ∗ t

The reward is 0 if there is no arrow.

23 / 57

Reward-State-Action Tensor v2

1, 1 2, 1 3, 1

1, 2 2, 2 3, 2

1, 3 2, 3 3, 3

E, F, R=0

S, F, R=0

The reward is −1 if there is no arrow.

24 / 57

The Actual State Transition-Action Tensor

p(St+1|St ,At)

Notice that each states are sparsely connected. Each state at max connected 3
other state. (Also note, 0=east, 1=south, 2=west, 3=north)

25 / 57

The Actual Reward Transition-Action Tensor

p(Rt+1|St ,At)

Notice how sparse are the rewards. (Also note, 0=east, 1=south, 2=west,
3=north)

26 / 57

Some more terminology

I Environment: The environment has a state St , and transitions according
to p(St+1|St ,At) yields rewards according to p(Rt |St ,At).

I Agent: The agent chooses actions At according to the policy π(At |St).

(* diagram taken From Sutton, Barto)

27 / 57

MDP Recap

I To Recap: States, Rewards, Policy, State Transition-Action Tensor,
Reward-State-Action Tensor, Environment, Agent

I Difference between MDP and PO-MDP: In MDP we can fully observe
the states of the environment. In PO-MDP, we either observe noisy
observations regarding the state, or we observe a related representation.
(The coordinates fully describe the MDP for the ongoing gridworld
example, but the example below considers the case where the agent only
sees what in front)

28 / 57

Table of Contents

The bandit problem

Reinforcement Learning
Introduction
Formal Definition of RL control problem
Learning in an MDP
Model Free Methods

Reinforcement Learning with Function Approximation (Deep RL)
DQN
Policy Gradient Methods

29 / 57

But what do we optimize?

Discounted sum of future rewards

Gt :=
∞∑
k=0

γ
kRt+k+1

The value function (expected future returns)

Vπ(s) := Eπ [Gt |St = s]

I Value Function gives the expected value of the random variable Gt given St for policy π.

I That is, for a given state, and a given policy what is the expected sum of future rewards.

30 / 57

But what do we optimize?

Discounted sum of future rewards

Gt :=
∞∑
k=0

γ
kRt+k+1

The value function (expected future returns)

Vπ(s) := Eπ [Gt |St = s]

I Value Function gives the expected value of the random variable Gt given St for policy π.

I That is, for a given state, and a given policy what is the expected sum of future rewards.

30 / 57

Visualizing the Value Function for our minigridworld

We show the value function for the optimal policy. (each square contains the
values for 4 different directions). 31 / 57

Visualizing the Value Function for our minigridworld

We show the value function for a learned policy. (each square contains the
values for 4 different directions). 32 / 57

Visualizing the Value Function for our minigridworld

We show the value function for a random policy. (each square contains the
values for 4 different directions). 33 / 57

Value Function

I The value function:

Vπ(St) := Eπ [Gt |St]

=
∑

At:T ,St+1:T ,Rt+1:T

∞∏
k=t+1

p(Sk |Sk−1, Ak−1)p(Rk |Ak−1, Sk−1)π(Ak−1|Sk−1)Gk

=
∑

At:T ,St+1:T ,Rt+1:T

∞∏
k=t+1

p(Sk |Sk−1, Ak−1)p(Rk |Ak−1, Sk−1)π(Ak |Sk)(Rk+1 + γGk+1)

I Vπ(St) =
∑

At
π(At |St)

∑
Rt+1,St+1

p(St+1, Rt+1|At , St)[Rt+1 + γVπ(St+1)]

34 / 57

Value Function

I The value function:

Vπ(St) := Eπ [Gt |St]

=
∑

At:T ,St+1:T ,Rt+1:T

∞∏
k=t+1

p(Sk |Sk−1, Ak−1)p(Rk |Ak−1, Sk−1)π(Ak−1|Sk−1)Gk

=
∑

At:T ,St+1:T ,Rt+1:T

∞∏
k=t+1

p(Sk |Sk−1, Ak−1)p(Rk |Ak−1, Sk−1)π(Ak |Sk)(Rk+1 + γGk+1)

=
∑

At ,St+1,Rt+1

(((((p(St+1|St , At)p(Rt+1|At , St)π(At |St)Rt+1+

∑
At

St+1
Rt+1

π(At |St)p(St+1, Rt+1|St , At)
∑

At+1:T
St+2:T
Rt+2:T

∞∏
k=t+2

π(Ak−1|Sk−1)p(Rk |Ak−1, Sk−1)p(Sk |Sk−1, Ak−1)γGt+1

︸ ︷︷ ︸
γEπ [Gt+1|St+1]=γVπ (St+1)

I Vπ(St) =
∑

At
π(At |St)

∑
Rt+1,St+1

p(St+1, Rt+1|At , St)[Rt+1 + γVπ(St+1)]

34 / 57

Value Function

I The value function:

Vπ(St) := Eπ [Gt |St]

=
∑

At:T ,St+1:T ,Rt+1:T

∞∏
k=t+1

p(Sk |Sk−1, Ak−1)p(Rk |Ak−1, Sk−1)π(Ak−1|Sk−1)Gk

=
∑

At:T ,St+1:T ,Rt+1:T

∞∏
k=t+1

p(Sk |Sk−1, Ak−1)p(Rk |Ak−1, Sk−1)π(Ak |Sk)(Rk+1 + γGk+1)

=
∑

At ,St+1,Rt+1

(((((p(St+1|St , At)p(Rt+1|At , St)π(At |St)Rt+1+

∑
At

St+1
Rt+1

π(At |St)p(St+1, Rt+1|St , At)
∑

At+1:T
St+2:T
Rt+2:T

∞∏
k=t+2

π(Ak−1|Sk−1)p(Rk |Ak−1, Sk−1)p(Sk |Sk−1, Ak−1)γGt+1

︸ ︷︷ ︸
γEπ [Gt+1|St+1]=γVπ (St+1)

I Vπ(St) =
∑

At
π(At |St)

∑
Rt+1,St+1

p(St+1, Rt+1|At , St)[Rt+1 + γVπ(St+1)]

34 / 57

Value Recursions

Value Function

Vπ(St) =Eπ[Gt |St]

=
∑
At

π(At |St)
∑

Rt+1,St+1

p(St+1,Rt+1|At , St)[Rt+1 + γVπ(St+1)]

Action-Value Function

Qπ(St ,At) =Eπ[Gt |St ,At]

=
∑

Rt+1,St+1

p(St+1,Rt+1|At , St)[Rt+1 + Vπ(St+1)]

=
∑

Rt+1,St+1

p(St+1,Rt+1|At , St)[Rt+1 +
∑
At+1

π(At+1|St+1)Qπ(St+1,At+1)]

35 / 57

Value Recursions

Value Function

Vπ(St) =Eπ[Gt |St]

=
∑
At

π(At |St)
∑

Rt+1,St+1

p(St+1,Rt+1|At , St)[Rt+1 + γVπ(St+1)]

Action-Value Function

Qπ(St ,At) =Eπ[Gt |St ,At]

=
∑

Rt+1,St+1

p(St+1,Rt+1|At , St)[Rt+1 + Vπ(St+1)]

=
∑

Rt+1,St+1

p(St+1,Rt+1|At , St)[Rt+1 +
∑
At+1

π(At+1|St+1)Qπ(St+1,At+1)]

35 / 57

Visualizing the Action-Value Function

Above images are: Q(S ,A = left), Q(S ,A = Right), Q(S ,A = Forward)

36 / 57

Bellman-Optimality Conditions

I The optimal value functions:

Q∗(S ,A) := max
π

Qπ(S ,A)

V∗(S) := max
π

Vπ(S)

I The optimal policy:

π∗(A|S) := arg max
A′

Q∗(S ,A
′)

I Also,

V∗(S) :=
∑
A

π∗(A|S)Q∗(S ,A)

=
∑
A

δ(A− arg max
A′

Q∗(S ,A
′))Q∗(S ,A)

= Q∗(S , arg max
A′

Q∗(S ,A
′))

= max
A

Q∗(S ,A)

37 / 57

Bellman-Optimality Conditions

I The optimal value functions:

Q∗(S ,A) := max
π

Qπ(S ,A)

V∗(S) := max
π

Vπ(S)

I The optimal policy:

π∗(A|S) := arg max
A′

Q∗(S ,A
′)

I Also,

V∗(S) :=
∑
A

π∗(A|S)Q∗(S ,A)

=
∑
A

δ(A− arg max
A′

Q∗(S ,A
′))Q∗(S ,A)

= Q∗(S , arg max
A′

Q∗(S ,A
′))

= max
A

Q∗(S ,A)

37 / 57

Bellman-Optimality Recursion

Bellman Value recursion:

V∗(St) =
∑
At

π(At |St)Q∗(St ,At)

= max
A

Q∗(S ,A)

= max
At

∑
Rt+1,St+1

p(St+1,Rt+1|At , St)[Rt+1 + γV∗(St+1)]

= max
At

∑
Rt+1,St+1

p(St+1,Rt+1|At , St)[Rt+1 + γmax
At+1

Q∗(St+1,At+1)]

Interpretation: We make the decision that yields largest RT at time T and then
make the best decision at T − 1, and go back until t.

38 / 57

Bellman-Optimality Recursion

Bellman Value recursion:

V∗(St) =
∑
At

π(At |St)Q∗(St ,At)

= max
A

Q∗(S ,A)

= max
At

∑
Rt+1,St+1

p(St+1,Rt+1|At , St)[Rt+1 + γV∗(St+1)]

= max
At

∑
Rt+1,St+1

p(St+1,Rt+1|At , St)[Rt+1 + γmax
At+1

Q∗(St+1,At+1)]

Interpretation: We make the decision that yields largest RT at time T and then
make the best decision at T − 1, and go back until t.

38 / 57

Value Iteration

I If we know the tables p(St+1|St ,At), and p(Rt+1|St ,At) then this recursion
converges:

Vπ(St) = max
At

∑
Rt+1,St+1

p(St+1,Rt+1|At , St)[Rt+1 + γVπ(St+1)]

The argmax makes the policy improve:
Vπ′(s)≥Qπ(s, π′(s)) = maxa Qπ(s, a)≥Vπ(s), ∀ s

39 / 57

Value Iteration

I If we know the tables p(St+1|St ,At), and p(Rt+1|St ,At) then this recursion
converges:

Vπ(St) = max
At

∑
Rt+1,St+1

p(St+1,Rt+1|At , St)[Rt+1 + γVπ(St+1)]

The argmax makes the policy improve:
Vπ′(s)≥Qπ(s, π′(s)) = maxa Qπ(s, a)≥Vπ(s), ∀ s

39 / 57

Value Iteration to recover the optimal policy

40 / 57

Result of the Value Iteration

(Note, 0=east, 1=south, 2=west, 3=north)

Click for Policy Replay

41 / 57

https://github.com/mila-iqia/TT-expertise/blob/rl/Reinforcement%20Learning/rltutorial/gifs/valueit33grid.gif

Result of the Value Iteration

(Note, 0=east, 1=south, 2=west, 3=north)
Click for Policy Replay

41 / 57

https://github.com/mila-iqia/TT-expertise/blob/rl/Reinforcement%20Learning/rltutorial/gifs/valueit33grid.gif

Table of Contents

The bandit problem

Reinforcement Learning
Introduction
Formal Definition of RL control problem
Learning in an MDP
Model Free Methods

Reinforcement Learning with Function Approximation (Deep RL)
DQN
Policy Gradient Methods

42 / 57

Monte Carlo Methods

I In general, we do not have the transition tables. We can however create
random episodes using the current policy. And then update our policy
according to the returns.

I The argmax makes the policy improve:
Vπ′(s)≥Qπ(s, π′(s)) = maxa Qπ(s, a) ≥ Qπ(s, π(s))≥Vπ(s)

43 / 57

Basic MC Algo. on our GridWorld Example

44 / 57

TD Methods (n) step Monte Carlo Methods

I Instead of sampling whole sequences, we can make updates on one step
updates of the form:

V (St)← V (St) + α[Gt − V (St)]

= V (St) + α[Rt+1 + γV (St+1)− V (St)]

I This also holds for the action value function:

Q(St ,At)← Q(St ,At) + α[Rt+1 + γQ(St+1,At+1)− Q(St ,At)]

45 / 57

Off policy TD - Q learning

I We change the updates:

Q(St ,At)← Q(St ,At) + α[Rt+1 + γmax
a

Q(St+1, a)− Q(St ,At)]

I With epochs the TD error goes to zero. Notice that the TD error is the
Bellman optimality condition.

46 / 57

Off policy TD - Q learning

I We change the updates:

Q(St ,At)← Q(St ,At) + α[Rt+1 + γmax
a

Q(St+1, a)− Q(St ,At)]

I With epochs the TD error goes to zero. Notice that the TD error is the
Bellman optimality condition.

46 / 57

Table of Contents

The bandit problem

Reinforcement Learning
Introduction
Formal Definition of RL control problem
Learning in an MDP
Model Free Methods

Reinforcement Learning with Function Approximation (Deep RL)
DQN
Policy Gradient Methods

47 / 57

Table of Contents

The bandit problem

Reinforcement Learning
Introduction
Formal Definition of RL control problem
Learning in an MDP
Model Free Methods

Reinforcement Learning with Function Approximation (Deep RL)
DQN
Policy Gradient Methods

48 / 57

Deep Q-Network, DQN (Playing Atari w DRL)

I The fixed point algorithm earlier, updates discrete tables.

I In DQN, We instead do function approximation such that
Q∗(St ,At) ≈ Q(St ,At ; θ). We can then apply this on large, continuous
state spaces.

I We then minimize the TD error.

L(θi) = E[Q(s, a; θi)− (r + γmax
a′

Q(s ′, a′; θi−1))]

49 / 57

DQN intuition

I We have two networks. Target network gets us to compute:
(r + γmaxa′ Q(s ′, a′; θi−1))

I Policy network outputs Q(s, a; θi).

I Then we try to minimize the absolute difference between the two networks.

I The network parameters are transferred after a certain number of
iterations.

I We evaluate the loss function using sampled transitions.

Sampling
Updates

50 / 57

Table of Contents

The bandit problem

Reinforcement Learning
Introduction
Formal Definition of RL control problem
Learning in an MDP
Model Free Methods

Reinforcement Learning with Function Approximation (Deep RL)
DQN
Policy Gradient Methods

51 / 57

Policy Gradient Methods

I So far we have only worked with updating Value Functions. This time we
compute a gradient of expected returns.

∇θJ(πθ) =:∇θEτ∼πθ [R(τ)]

=∇θ
∫

p(τ |θ)r(τ)dτ

=

∫
∇θp(τ |θ)r(τ)dτ

=

∫
p(τ |θ)∇θ log p(τ |θ)r(τ)dτ

=Eτ∼πθ [∇θ log p(τ |θ)r(τ)]

≈
∑
t

∇θπ(at |st ; θ)r(st , at , st+1)

I We have a Monte Carlo estimate for the gradient of the expected returns.
The gradient is amplified if r(.) is large.

I This framework is the basis for several algorithms:
I rt(st , at , st+1) = Gt → REINFORCE
I rt(st , at , st+1) = Gt − v̂(st) → REINFORCE with baseline
I rt(st , at , st+1) = Rt + γv̂(st+1)− v̂(st) One step actor critic

52 / 57

Policy Gradient Methods

I So far we have only worked with updating Value Functions. This time we
compute a gradient of expected returns.

∇θJ(πθ) =:∇θEτ∼πθ [R(τ)]

=∇θ
∫

p(τ |θ)r(τ)dτ

=

∫
∇θp(τ |θ)r(τ)dτ

=

∫
p(τ |θ)∇θ log p(τ |θ)r(τ)dτ

=Eτ∼πθ [∇θ log p(τ |θ)r(τ)]

≈
∑
t

∇θπ(at |st ; θ)r(st , at , st+1)

I We have a Monte Carlo estimate for the gradient of the expected returns.
The gradient is amplified if r(.) is large.

I This framework is the basis for several algorithms:
I rt(st , at , st+1) = Gt → REINFORCE
I rt(st , at , st+1) = Gt − v̂(st) → REINFORCE with baseline
I rt(st , at , st+1) = Rt + γv̂(st+1)− v̂(st) One step actor critic

52 / 57

Policy Gradient Methods

I So far we have only worked with updating Value Functions. This time we
compute a gradient of expected returns.

∇θJ(πθ) =:∇θEτ∼πθ [R(τ)]

=∇θ
∫

p(τ |θ)r(τ)dτ

=

∫
∇θp(τ |θ)r(τ)dτ

=

∫
p(τ |θ)∇θ log p(τ |θ)r(τ)dτ

=Eτ∼πθ [∇θ log p(τ |θ)r(τ)]

≈
∑
t

∇θπ(at |st ; θ)r(st , at , st+1)

I We have a Monte Carlo estimate for the gradient of the expected returns.
The gradient is amplified if r(.) is large.

I This framework is the basis for several algorithms:
I rt(st , at , st+1) = Gt → REINFORCE
I rt(st , at , st+1) = Gt − v̂(st) → REINFORCE with baseline
I rt(st , at , st+1) = Rt + γv̂(st+1)− v̂(st) One step actor critic

52 / 57

Policy Gradient Methods Workflow

53 / 57

Comparing, recapping 4 DRL algorithms (and MC)

54 / 57

Comparing, recapping 4 DRL algorithms (and MC)

54 / 57

Some conclusions after playing with RL things

I Deep RL is Difficult

I We compared DQN, REINFORCE, RF. w. baseline, a2c on 3x3
Minigridworld environment.

I We used the same policy network, and same hyper parameters for all
models.

I Changing the Reinforce coefficient improves the policy gradient algorithms.

I DQN converges faster, but gets stuck in a local optimum. ε is very
important.

I Recap: Policy Gradient Algos. are on-policy. DQN is off-policy. Both do
function approximations. In a2c and Reinforce with base, we also learn an
approximation for the value function.

55 / 57

Taxonomy of RL Algorithms

We covered DQN, Policy Gradient (Reinforce), a2c (a3c is the asynchronous
version), and looked at what to do given the model in the discrete case.

56 / 57

Conclusions / Things I couldn’t get to

I We did a very basic introduction.

I Code is available on my github.

I Resources: Sutton, Barto book; DQN paper; A3C paper; Minigrid world
environment; open ai spinning up page; torch-ac package; rl-starting-files
pytorch repo.

I Model based (practical) RL, multiagent RL, off policy without exploration
learning.

57 / 57

	The bandit problem
	Reinforcement Learning
	Introduction
	Formal Definition of RL control problem
	Learning in an MDP
	Model Free Methods

	Reinforcement Learning with Function Approximation (Deep RL)
	DQN
	Policy Gradient Methods

