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Goal of this presentation

I To spell out the fundamentals of Reinforcement Learning Setup (MDP),
using a simple example.

I In very high level, talk about several solutions.
I Value iteration, Policy Evaluation, Monte Carlo RL, SARSA, Q-learning,

DQN, Reinforce, Reinforce with baseline, A2C.

I So, no advanced Reinforcement Learning!!!
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The multi-armed bandit problem

I We have K choices at a given time t. We denote this with
At ∈ {1, . . . ,K}.

I Each choice has an associated reward. That is, the choice At has an
associated reward Rt .

I The ultimate goal is to maximize the sum of rewards:

max
A1:T

T∑
t=1

Rt(At)
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Dependency modeling of the bandit problem

A1 A2
. . . AT

R1 R2
. . . RT
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An example bandit problem

I Below is p(Rt |At) ∀t:

I p(Rt |At) = N (µ(At), σ
2)
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How do we solve the bandit problem

I We can just count:

QT (a) :=

∑T−1
t=1 Rt1[At=a]∑T−1
t=1 1[At=a]

and then set At = arg maxa QT (a).

I The Incremental Version:

Qt+1 = Qt +
1

t
[Rt − Qt ]

I Notice the form:

NewEst.← OldEst.+ StepSize[Target − OldEstimate]
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An Incremental Solution for the bandit problem
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Testing the simple bandit
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Contextual bandits

S1 S2 . . . S4

A1 A2
. . . AT

R1 R2
. . . RT

I The context changes, and consequently the reward distribution changes
also.

I We have an additional challenge of associating the rewards with the
context. This setup is known as associative search also.
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Example Tasks
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Example Tasks (Games)
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Another Example
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Full Reinforcement Learning

S0 S1 S2 . . . ST

A0 A1 A2
. . . AT

R1 R2
. . . RT

I S1:T – states

I A1:T – actions

I R1:T – rewards

St+1|St ,At ∼ p(St+1|St ,At)

Rt+1|At , St ∼ p(Rt+1|St ,At)

At |St ∼ π(At |St),

Note the Markovian assumption! Furthermore:

St+1|St ,At ∼ p(S ′|S ,A), ∀t
Rt+1|At , St ∼ p(R ′|S ,A), ∀t

At |St ∼ π(A|S),∀t
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What do we learn in Reinforcement Learning

I The main goal is to learn a policy π(A|S), so as to maximize future
rewards.

I We usually don’t know the environment dynamics
p(St+1,Rt+1|St ,At) = p(St+1|St ,At)p(Rt+1|St ,At). But we are typically
able to interact with the environment to sample episodes:
(S0,A0,R0), (S1,A1,R1), . . . , (ST ,AT ,RT ). (That is, if we have access to
a simulator)

I Some approaches first learn the environment dynamics and then do RL.
(Model Based RL)

I Another family of approaches don’t learn the environment, but rather
interact with it. (Model Free RL)
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Example Reinforcement Learning Setup

I States:
S ∈ {((x , y), d),where x , y ∈
{1, 2, 3}, d ∈ {W ,N,E ,S}}.
Examples: ((1, 1), E), ((3, 3), S)

I Actions: A ∈
{turnleft, turnright, goforward}.

I Rewards: 1− t ∗ c each time we
get to green square.

I Interactive Demo
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Action-State Transition tensor

I State transition:
p(S ′ = (1, 1,N)|S = (1, 1,E),A = turnleft) = 1
p(S ′ = (2, 1,E)|S = (1, 1,E),A = forward) = 1
p(S ′ = (2, 1,N)|S = (1, 1,E),A = forward) = 0
p(S ′ = (3, 3,E)|S = (1, 1,E),A) = 0, ∀A

I Reward distribution:
p(R ′ = 0|S = (1, 1,E),A) = 1, ∀A
p(R ′ = 1−c ∗ t|S = (3, 2, S),A = goforward) = 1

I Policy:
π(At |St), we want to learn one so that the
rewards are maximized!
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State Transition-Action Tensor (Action=Forward)

1, 1 2, 1 3, 1

1, 2 2, 2 3, 2

1, 3 2, 3 3, 3

N

W

W

W

S S S

E

E

E

NNE

W

E

W

E

W

E

W

E

W

E

W

E

W

S N

If there is an arrow, that means the corresponding entry is 1.
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State Transition-Action Tensor (Action={Left,Right})

N

W E

S

left

left left

left

right right

rightright

The coordinates stay the same, but the orientation (N, E, S, W) change.
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Reward-State-Action Tensor

1, 1 2, 1 3, 1

1, 2 2, 2 3, 2

1, 3 2, 3 3, 3

E, F, R=1− c ∗ t

S, F, R=1− c ∗ t

The reward is 0 if there is no arrow.
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Reward-State-Action Tensor v2

1, 1 2, 1 3, 1

1, 2 2, 2 3, 2

1, 3 2, 3 3, 3

E, F, R=0

S, F, R=0

The reward is −1 if there is no arrow.
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The Actual State Transition-Action Tensor

p(St+1|St ,At)

Notice that each states are sparsely connected. Each state at max connected 3
other state. (Also note, 0=east, 1=south, 2=west, 3=north)
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The Actual Reward Transition-Action Tensor

p(Rt+1|St ,At)

Notice how sparse are the rewards. (Also note, 0=east, 1=south, 2=west,
3=north)
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Some more terminology

I Environment: The environment has a state St , and transitions according
to p(St+1|St ,At) yields rewards according to p(Rt |St ,At).

I Agent: The agent chooses actions At according to the policy π(At |St).

(* diagram taken From Sutton, Barto)
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MDP Recap

I To Recap: States, Rewards, Policy, State Transition-Action Tensor,
Reward-State-Action Tensor, Environment, Agent

I Difference between MDP and PO-MDP: In MDP we can fully observe
the states of the environment. In PO-MDP, we either observe noisy
observations regarding the state, or we observe a related representation.
(The coordinates fully describe the MDP for the ongoing gridworld
example, but the example below considers the case where the agent only
sees what in front)
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But what do we optimize?

Discounted sum of future rewards

Gt :=
∞∑
k=0

γ
kRt+k+1

The value function (expected future returns)

Vπ(s) := Eπ [Gt |St = s]

I Value Function gives the expected value of the random variable Gt given St for policy π.

I That is, for a given state, and a given policy what is the expected sum of future rewards.
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Visualizing the Value Function for our minigridworld

We show the value function for the optimal policy. (each square contains the
values for 4 different directions). 31 / 57



Visualizing the Value Function for our minigridworld

We show the value function for a learned policy. (each square contains the
values for 4 different directions). 32 / 57



Visualizing the Value Function for our minigridworld

We show the value function for a random policy. (each square contains the
values for 4 different directions). 33 / 57



Value Function

I The value function:

Vπ(St ) := Eπ [Gt |St ]

=
∑

At:T ,St+1:T ,Rt+1:T

∞∏
k=t+1

p(Sk |Sk−1, Ak−1)p(Rk |Ak−1, Sk−1)π(Ak−1|Sk−1)Gk

=
∑

At:T ,St+1:T ,Rt+1:T

∞∏
k=t+1

p(Sk |Sk−1, Ak−1)p(Rk |Ak−1, Sk−1)π(Ak |Sk )(Rk+1 + γGk+1)

I Vπ(St ) =
∑

At
π(At |St )

∑
Rt+1,St+1

p(St+1, Rt+1|At , St )[Rt+1 + γVπ(St+1)]
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Value Recursions

Value Function

Vπ(St) =Eπ[Gt |St ]

=
∑
At

π(At |St)
∑

Rt+1,St+1

p(St+1,Rt+1|At , St)[Rt+1 + γVπ(St+1)]

Action-Value Function

Qπ(St ,At) =Eπ[Gt |St ,At ]

=
∑

Rt+1,St+1

p(St+1,Rt+1|At , St)[Rt+1 + Vπ(St+1)]

=
∑

Rt+1,St+1

p(St+1,Rt+1|At , St)[Rt+1 +
∑
At+1

π(At+1|St+1)Qπ(St+1,At+1)]
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Visualizing the Action-Value Function

Above images are: Q(S ,A = left), Q(S ,A = Right), Q(S ,A = Forward)
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Bellman-Optimality Conditions

I The optimal value functions:

Q∗(S ,A) := max
π

Qπ(S ,A)

V∗(S) := max
π

Vπ(S)

I The optimal policy:

π∗(A|S) := arg max
A′

Q∗(S ,A
′)

I Also,

V∗(S) :=
∑
A

π∗(A|S)Q∗(S ,A)

=
∑
A

δ(A− arg max
A′

Q∗(S ,A
′))Q∗(S ,A)

= Q∗(S , arg max
A′

Q∗(S ,A
′))

= max
A

Q∗(S ,A)
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Bellman-Optimality Recursion

Bellman Value recursion:

V∗(St) =
∑
At

π(At |St)Q∗(St ,At)

= max
A

Q∗(S ,A)

= max
At

∑
Rt+1,St+1

p(St+1,Rt+1|At , St)[Rt+1 + γV∗(St+1)]

= max
At

∑
Rt+1,St+1

p(St+1,Rt+1|At , St)[Rt+1 + γmax
At+1

Q∗(St+1,At+1)]

Interpretation: We make the decision that yields largest RT at time T and then
make the best decision at T − 1, and go back until t.
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Value Iteration

I If we know the tables p(St+1|St ,At), and p(Rt+1|St ,At) then this recursion
converges:

Vπ(St) = max
At

∑
Rt+1,St+1

p(St+1,Rt+1|At , St)[Rt+1 + γVπ(St+1)]

The argmax makes the policy improve:
Vπ′(s)≥Qπ(s, π′(s)) = maxa Qπ(s, a)≥Vπ(s), ∀ s

39 / 57
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Value Iteration to recover the optimal policy
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Result of the Value Iteration

(Note, 0=east, 1=south, 2=west, 3=north)

Click for Policy Replay
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Monte Carlo Methods

I In general, we do not have the transition tables. We can however create
random episodes using the current policy. And then update our policy
according to the returns.

I The argmax makes the policy improve:
Vπ′(s)≥Qπ(s, π′(s)) = maxa Qπ(s, a) ≥ Qπ(s, π(s))≥Vπ(s)

43 / 57



Basic MC Algo. on our GridWorld Example
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TD Methods (n) step Monte Carlo Methods

I Instead of sampling whole sequences, we can make updates on one step
updates of the form:

V (St)← V (St) + α[Gt − V (St)]

= V (St) + α[Rt+1 + γV (St+1)− V (St)]

I This also holds for the action value function:

Q(St ,At)← Q(St ,At) + α[Rt+1 + γQ(St+1,At+1)− Q(St ,At)]

45 / 57



Off policy TD - Q learning

I We change the updates:

Q(St ,At)← Q(St ,At) + α[Rt+1 + γmax
a

Q(St+1, a)− Q(St ,At)]

I With epochs the TD error goes to zero. Notice that the TD error is the
Bellman optimality condition.
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Deep Q-Network, DQN (Playing Atari w DRL)

I The fixed point algorithm earlier, updates discrete tables.

I In DQN, We instead do function approximation such that
Q∗(St ,At) ≈ Q(St ,At ; θ). We can then apply this on large, continuous
state spaces.

I We then minimize the TD error.

L(θi ) = E[Q(s, a; θi )− (r + γmax
a′

Q(s ′, a′; θi−1))]
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DQN intuition

I We have two networks. Target network gets us to compute:
(r + γmaxa′ Q(s ′, a′; θi−1))

I Policy network outputs Q(s, a; θi ).

I Then we try to minimize the absolute difference between the two networks.

I The network parameters are transferred after a certain number of
iterations.

I We evaluate the loss function using sampled transitions.

Sampling
Updates
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Policy Gradient Methods

I So far we have only worked with updating Value Functions. This time we
compute a gradient of expected returns.

∇θJ(πθ) =:∇θEτ∼πθ [R(τ)]

=∇θ
∫

p(τ |θ)r(τ)dτ

=

∫
∇θp(τ |θ)r(τ)dτ

=

∫
p(τ |θ)∇θ log p(τ |θ)r(τ)dτ

=Eτ∼πθ [∇θ log p(τ |θ)r(τ)]

≈
∑
t

∇θπ(at |st ; θ)r(st , at , st+1)

I We have a Monte Carlo estimate for the gradient of the expected returns.
The gradient is amplified if r(.) is large.

I This framework is the basis for several algorithms:
I rt(st , at , st+1) = Gt → REINFORCE
I rt(st , at , st+1) = Gt − v̂(st) → REINFORCE with baseline
I rt(st , at , st+1) = Rt + γv̂(st+1)− v̂(st) One step actor critic
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Policy Gradient Methods Workflow
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Comparing, recapping 4 DRL algorithms (and MC)

54 / 57



Comparing, recapping 4 DRL algorithms (and MC)

54 / 57



Some conclusions after playing with RL things

I Deep RL is Difficult

I We compared DQN, REINFORCE, RF. w. baseline, a2c on 3x3
Minigridworld environment.

I We used the same policy network, and same hyper parameters for all
models.

I Changing the Reinforce coefficient improves the policy gradient algorithms.

I DQN converges faster, but gets stuck in a local optimum. ε is very
important.

I Recap: Policy Gradient Algos. are on-policy. DQN is off-policy. Both do
function approximations. In a2c and Reinforce with base, we also learn an
approximation for the value function.
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Taxonomy of RL Algorithms

We covered DQN, Policy Gradient (Reinforce), a2c (a3c is the asynchronous
version), and looked at what to do given the model in the discrete case.

56 / 57



Conclusions / Things I couldn’t get to

I We did a very basic introduction.

I Code is available on my github.

I Resources: Sutton, Barto book; DQN paper; A3C paper; Minigrid world
environment; open ai spinning up page; torch-ac package; rl-starting-files
pytorch repo.

I Model based (practical) RL, multiagent RL, off policy without exploration
learning.
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