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Sequence Modeling

» E.g. Speech, Handwriting, Music, Text, Finance, and
» Uber

W e sy
PANDARUS :

Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.
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Familiar Sequence Modeling Approaches

> Latent Variable Sequence Modeling
> HMM/LDS: p(x1.7) = 32, - T1; p(xt|he)p(he|he—1)
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Familiar Sequence Modeling Approaches

> Latent Variable Sequence Modeling
» HMM/LDS: p(x1.7) = ZthHtP xt|ht)p(he|he—1)

§6 !

> Fully Observed Sequence Modeling
> Markov Model p(x1.7) =[], p(xt|xt—1)

@G @
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Familiar Sequence Modeling Approaches

» Latent Variable Sequence Modeling
> HMM/LDS: p(xi.7) = 224, , T1; p(xelhe)p(hel he—1)

bd e

> Fully Observed Sequence Modeling
> RNN p(x1.7) = Ht p(xt|x1:t—1)
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Familiar Sequence Models

Mixture of Markov Models Factorial HMM

[Subakan, et al. 2013] [Subakan, et al. 2015]
Mixture of HMMs

[Subakan, et al. 2015]

L n= ...NJ

[Subakan, et al. 2014]
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Maximum Likelihood via EM

» Maximum Likelihood is the first thing that comes to mind:

max log p(x|0) = max Iog; p(x, h|0)
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This objective is in general not jointly convex.
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Is there an alternative method which yields a global solution for this?
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Maximum Likelihood via EM

» Maximum Likelihood is the first thing that comes to mind:
max log p(x|0) = max Iog; p(x, h|0)
> We can use Jensen's inequality by injecting a logarithm, and the
distribution g(h):

q(h) _ p(x, h|6
Iogzh:p(xa h\9)m =log Eq(n) {W}

> Eqen) [log p(x, hl0)] + Hy

v

This objective is in general not jointly convex.

v

Is there an alternative method which yields a global solution for this?

(Probably) No. (P # NP). But there are “close” problems which are
easier to solve.

v

6
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Global vs Local

&~ Summit of the mountain,

cal ma'xi%,

(EM)
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Global vs Local

&~ Summit of the mountain,

Disclaimer: We will not necessarily go to the red summit.
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Example Problems with Global (Unique) Solutions

» Convex optimization problems.
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Example Problems with Global (Unique) Solutions

» Convex optimization problems.

» Non-Convex canonical example:
. T
min [|X — UXV ||r
U,V
-
v u=I,

viv =1,
> >0, diagonal

v

Rayleigh Quotient
> Procrustes Problem
Sinusoid Estimation (ESPRIT)

v
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Example Problems with Global (Unique) Solutions

» Convex optimization problems.

» Non-Convex canonical example:
min || X — UZV ||
u,z,v
utu=1,
viv =1,
¥ >0, diagonal
» Rayleigh Quotient
» Procrustes Problem

> Sinusoid Estimation (ESPRIT)
» Method of Moments for Latent Variable Models
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Example Problems with Global (Unique) Solutions

» Convex optimization problems.

» Non-Convex canonical example:
min || X — UZV " [|¢
U,V
utu=1,
viv =1,
> >0, diagonal
» Rayleigh Quotient
> Procrustes Problem
> Sinusoid Estimation (ESPRIT)

» Method of Moments for Latent Variable Models

» Dictionary learning. (under assumptions)

8/40
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The other way: Method of Moments

> The idea is to estimate the models parameters p1.x by solving a system of
non-linear equations formed with moments E[gk(x)], k € {1,...K}:

E[g1(x)] =A(p1:x)

Elgk (x)] =fx (p1.x)

10
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The other way: Method of Moments

> The idea is to estimate the models parameters p1.x by solving a system of
non-linear equations formed with moments E[gk(x)], k € {1,...K}:

E[g1(x)] =A(p1:x)

Elgk (x)] =fx (p1.x)

» Canonical Example: x ~ G(a, b):
E[x] =ab - b =(E[x’] - E[x]")/E[x]
E[x*] =ab® + a°b° 3 =E[x]*/(E[x’] — E[x]*)

» This is not as statistically efficient as ML (CRLB). But the problem is
(usually) “easier”.



Method of Moments for LVMs

MoM for spherical GMM: [Hsu, Kakade 13]

h ~ Cat(w)
x|h ~ N(un,o°1)
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k=1
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Method of Moments for LVMs

MoM for spherical GMM: [Hsu, Kakade 13]

h ~ Cat(m)
x|h ~ N, o*1)

> Let's write down some moments:

K K
E[x] = Zukﬂ'k, E[x® x] = Zﬂ'k [k @ pk+o’l
k=1 k=1
K
E[x ® x ® x] :Zﬂ'k Pk @ ke @ i
k=1

L
+0? <Z Exloe®e+e@Ex]@ea+ea®e® JE[X])
=1
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Method of Moments for LVMs

MoM for spherical GMM: [Hsu, Kakade 13]

h ~ Cat(m)
xlh ~ N(un,ol)

K K
E[x] = Z,ukwk, E[x®x] = Zﬂ'k Lk & pk-+garbage
k=1 k=1
K
Elx @ x® x] = Z Tk ik @ ik @ pk+garbage

k=1
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Method of Moments for a GMM

» Form the system of equations:

K
M, :=E[x ® x] — garbage = erk Lk @ [k
P
K
M; :=E[x ® x ® x] — garbage = erk Lk @ ik @ [k

k=1
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Method of Moments for a GMM

» Form the system of equations:

K

M, :=E[x ® x] — garbage = Zﬂk Lk @ ok
k=1
K
M; :=E[x ® x ® x] — garbage = Z Tk ok @ pk & [k
k=1

STttt (1

Weighted sum of outer

Third Order Moment product of parameter

vectors.
Tensor
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Obtaining the parameters

» Whiten M3 with a matrix W, such that:

W MW = |
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Obtaining the parameters

» Whiten M3 with a matrix W, such that:
W MW = |

> Then the eigenvectors of
B K
Ms=> " wi(WTp) @ (W p)e (W p)
k=1

are obtainable via power iterations.

13 /40



How general are moment methods?

(and where do | come in)

>

>

>

PCA

ICA papers from 90s [mainly Cardoso]

System ID literature from 90s. (Kalman Filters)

Inference in HMMs [Hsu et al. 09]

Parameter Estimation in HMMs [Anandkumar et al. 12, 14]

Multiview Discrete/Mixture Models [Anandkumar et al. 12]

Inference in general trees [Parikh et al. 12]

Single View Spherical GMMs [Hsu, Kakade, 13]

Parameter estimation in somewhat general graphs [Chaganty, Liang 14]
Framework for HMMs with special transition structures. [Me et al., 14,15]
Attempts on Neural Networks [Anandkumar, 15,16]
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Spectral Learning of Mixture of HMMs

[Smyth, 97]

h, ~ Categorical(m,)
xn ~ HMM(A,, O,)
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Spectral Learning of Mixture of HMMs

[Smyth, 97]

h, ~ Categorical(m,)
xn ~ HMM(A,, O,)

» Learning Goal: Estimate 7,, Ap, Op, given xi.ny
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Mixture of HMMs

h, ~ Categorical(m,)
Xn|hn ~ HMM(pp,, An,, Oh,)
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Mixture of HMMs

h, ~ Categorical(m,)
Xn|hn ~ HMM(ph,, An,, Oh,)

Epe ® 1] =Y pumh (Epx|r, h] @ E[xi|r, h])

h,n

:Z PhTh <Z A(r1< r, h)ﬂQ.h) ® Hry,h

h,r r

=Ofat Avdingdiag(p @ ) O

Problem: The moment estimator is agnotic to the block structure of the
model.

16
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Mixture of HMMs

» An MHMM with local parameters 01.x = (O1:k, A1k, V1K, ) is an HMM
with global parameters § = (O, A, ), where:

AL 0 ... 0 T
— _ 0 A2 0 iv1%}
O: I:Ol OK} 5 A: s 17:

0 0 AK TKVK

» How to impose this structural constraint on the estimator?

17
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Two stage estimation for HMMs

HMM-Mixture model equivalence, [Kontorovich et al., 13]

An HMM with state marginals p(h;) is equivalent to a mixture model with
mixing weights 7 := + S, p(he), and the same emission parameters.



Two stage estimation for HMMs

HMM-Mixture model equivalence, [Kontorovich et al., 13]
An HMM with state marginals p(h;) is equivalent to a mixture model with

mixing weights 7 := + S, p(he), and the same emission parameters.

> First compute (estimate) O, and pi.

> Then solve the convex problem:
min || Mz — OAdiag(7)O||r

st.1TA=1",
A>0.



Two stage estimation framework with structural constraints:

Two stage estimation framework

Get rough/permuted estimates for the parameters 5, 2,%.

v

v

De-permute A. (Solve the graph problem dictated by model)

Solve:

v

min || Mz — OAdiag(7)0||r

st.1TA=1",
A>0.
f(M,A) =0

» f, and M depend on the model.

19 /40



Structural Constraints wrt. Model

The framework handles these models:

>

>

MHMM: f(M,A) = AG (1 — M) =0. M is block diagonal.

SHMM: f(M,A) = A® (1 - M) - B® :1yly, = 0. M is block
diagonal.

Left-to-Right HMM: f(M,A) = A® (1 — M) = 0, estimate M with a
greedy graph traversal algorithm. M is lower triangular.

Bakis HMM: f(M,A) = A® (1 — M) =0, M corresponds to an
Hamiltonian circuit (TSP approximation). M is binary lower first
uni-triangular.

HMM with mixture emissions: (M, A™) = AW1T.



Mixture of HMMs: De-permutation

liMe—yoo A° = [Wilfy, V21f, ..., Vk1}], where ¥y is the k’th eigenvector

ey

123456789 123456789 123456789 123456789
4
t+1 t+1

cousanome
couTanmme
PYSP TN
couganmye
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Mixture of HMMs: De-permutation

> limeyoo A° = [1);, W17, ..., Vkl}], where ¥y is the k’th eigenvector
of A.

1 1 1 1

2| 2| 2| 2|

3| 3| 3| 3
f4 f4 f4 f4

5| 5] 5] 5|
‘s ‘s ‘s ‘s

7] 7] 7] 7]

8| 8| 8| 8

9| 9| 9| 9|

123456789 123456789 123456789 123456789

rHl rtil 1 rh»l
» What happens for P(A):

1 1 1 1

2| 2| 2| 2|

3] 3] 3] 3]

P 4 4 4
7‘5 7‘5 7‘5 7‘5

7 7 7 7

8| f 8| 8| 8

9 9 9 9

123456789 123456789 123456789 123456789

r“l 1 1 1
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Mixture of HMMs: De-permutation

> lime oo A° = [ly, Walf,
of A.

. VKIL], where vy is the kth eigenvector

CONDUBWNE
CONDUBWNE

CONDUBWNE
CONDUBWNE

123456789
rt* 1

» What happens for P(A):

123456789
rt+1

123456789 123456789
t+1 M1

123456789
rnl

» What happens in practice:

el

CoNnBwWNE

123456789
t+1

CoNonBwWNE
RN BwWNE

123456789 123456789
t+1 1

CoNonBwNE

Ll

123456789
t+1

CuNonBwNE

123456789
t+1

RN BwWNE

123456789 123456789
t+1 1
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MHMM De-permutation Continued

» But we can estimate the number of HMMs:

No. of Significant Eigenvalues Spectral Longevity of Eigenvalues

>
£10|
8 >
7 “8” 8
K ? Ss
4 E 4
|53
3| 3 .
2] Qo
i %) 1
10 20 1 2 3 4 5 6 7 8 9
e Eigenvalue Index

» Then form rank-K reconstruction A’
r —1
A = VI:RAI:RV

> Then Cluster. (A La Spectral Clustering)

N
N



Experimental Results

Digit clustering with MHMMs:

[ Algorithm [Iv2 [Iv3 [ Iv4d [ 1Ivb [ 2v3 [ 2v4 [ 2v5 |

Spectral 100 70 54 55 83 99 99
EM init. w/ Spectral 100 | 99 | 100 | 100 | 96 | 100 | 100
EM init. at Random 96 99 98 54 83 100 | 100




Switching HMM

helhe—1 ~ Cat(B(:, he—1))
relre—1, he, he—1 ~ [he = he—1] Cat(A(:, re—1, ht))
+ [he # he—1]U(.)
Xe|hey e~ p(xe|he, re)
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Switching HMM

» An SHMM with local parameters 01:xk = (O1:k, A1k, V1.k, B) is an HMM
with global parameters = (O, A, D), where:

1’ 1u’
Bi1A: Bi25 oo Bimgyg
1’ 1’
= - B2,17M B> A, B27M7M
O=[0 ... Ox].A= _ ,
1’ 1’
BM,lfM BM,sz ... BumAk
- T
vV = [7T11/1 ivl%} 7TKI/K]

» How to impose this structural constraint on the estimator?
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Switching HMM

» An SHMM with local parameters 01:xk = (O1:k, A1k, V1.k, B) is an HMM
with global parameters = (O, A, D), where:

1’ 1u’
Bi1A: Bi25 oo Bimgyg
1’ 1’
= - B2,17M B> A, B27M7M
O=[0 ... Ox].A= ,
1’ 1’
BM,lfM BM,sz ... BumAk
- T
vV = [7T11/1 ivl%} 7TKI/K]

» How to impose this structural constraint on the estimator?
» Use the same de-permutation method as MHMM.
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MHMM-SHMM spectrum

Error

> A;; ~ Dirichlet(1,...,1), B=

[CEEES

_1—a «

o =0.00 a=0.11 «=0.22 «=0.33 o=0.44 o=0.55 o =0.66

[« lfa}

o=077

o=0.88

o=0.99

e R R

o
kl

e
;l

e S

e

o e W

LEPETER

Error vs o

—¥— After refinement

m—

I 1
.00 0.11 0.22 0.33 0.44 0.55 0.66
o

I
0.77

0.88

0.99
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Bakis-HMM

> Is an HMM that can only move one state at a time.

1 0 ... 0 0
1 1 ... 0 0
»A=1o ... . ... 0
0o ... 1 1 0
0 ... 0 1 1

» Every state is visited exactly once.

» Depermutation: Find a maximum weight Hamiltonian circuit on A.
(Traveling Salesman problem)

(ire)

>{ ATG

27 /40



Experimental Results

Synthetic Data experiment:
Viterbi decoding accuracy

ogfF T T T T T
= 45
R 01:23% 01 2345
< 96]- 12345 ~ e T G W LN
§94 2 ViV V¥ —400
5940 —4000
3
Bogf ¥ VVY o — 40000

v ——200000
90tii i i i i i i i
1.0 2.0 4.1 8.4 172 349 711 1448 2948 6000
Run Time (sec)
Speech onset detection:
0 F-measure vs Time
T

o 4

5095¢ [ 55 , ¥

[

$ 0041 —100 ! i

] —400

% 0.93F | —1600 f

L

L L
1.58 2. 48 3. 91 6. 17 9. 72 15 33 24.15 38.07 60.00
Run Time (sec)



Impressions on MoM:

» Good:

> Global

> Initialization: No need to worry about initialization. Also can initialize EM.

> Scalable: Computationally cheap: Gather the moments, factorize a small
matrix.

> Interesting/Theoretical: Bounds.

> Subroutine: Potentially can be used as a subroutine under EM.
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Impressions on MoM:

» Good:
> Global
> Initialization: No need to worry about initialization. Also can initialize EM.
> Scalable: Computationally cheap: Gather the moments, factorize a small
matrix.
> Interesting/Theoretical: Bounds.
> Subroutine: Potentially can be used as a subroutine under EM.
» Bad:
> Model Mismatch: Horrible in regards to model mismatch. (Hard
assumption on model Unlike ML, which minimizes KL(p||q).
> Not as statistically efficient as ML.
> :
> You can get complex numbers for parameter estimates/likelihoods.
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Factorial HMM
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Factorial HMM

[Ghahramani, Jordan; 97]

rilrioy ~ Cat(A'r_y)

K ~ Cat(ARFE )

xelrty .., il ~N([OY ..., 051 |...| %))
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Factorial HMM

[Ghahramani, Jordan; 97]

rtK|rtK_1 ~ Cat(AKrtK_l)

1
It

xe|rt, .., ~N(O,..., 01 |...| 0%
K
X = (0] R + €
NN

The dictionary Activations noise

31/40



Some Dictionary Learning Perspective..

> General Dictionary Learning

min||[X - O R F
O,R ~  ~~

Dictionary Activations

PCA: Both O and R are orthogonal.

ICA: Solvable if R has independent coordinates.

Mixture Model: R is one sparse. Solvable is O has full column rank.
Sparse Dictionary Learning: Solvable if O is square and R is sparse
Bernouilli-Gaussian. [Spielman et al. 12]
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Some Dictionary Learning Perspective..

> General Dictionary Learning

min||[X - O R F
O,R ~  ~~

Dictionary Activations

PCA: Both O and R are orthogonal.
ICA: Solvable if R has independent coordinates.

vvyyvyy

Sparse Dictionary Learning: Solvable if O is square and R is sparse
Bernouilli-Gaussian. [Spielman et al. 12]

» Factorial Models:

Rl

> No constraint on O, columns of R are block-K sparse.
> No Unique Solution!!!

Mixture Model: R is one sparse. Solvable is O has full column rank.



FHMM Identifiability

rank(R) < MK — (K — 1)
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FHMM Identifiability

Rank Deficiency
rank(R) < MK — (K — 1)

Proof Sketch:
dim(null(R™)) > K — 1.

Therefore from rank-nullity theorem rank(R) = MK — (K — 1).
FHMM is unidentifiable

For a given assignment matrix R € R€*T There exists O; # O, such that

[1, N(x|O:R,0%1) = [1, N (x| O2R, 5°1).
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FHMM Identifiability

Rank Deficiency
rank(R) < MK — (K — 1)

Proof Sketch:
dim(null(R™)) > K — 1.

Therefore from rank-nullity theorem rank(R) = MK — (K — 1).

FHMM is unidentifiable
For a given assignment matrix R € R€*T There exists O; # O, such that

[1, N(x|O:R,0%1) = [1, N (x| O2R, 5°1).
Proof: Since dim(null(R7)) > K — 1, (O1 — O2)R = 0, for O1 # O..

33/40



FHMM ldentifiable Alternative 1

Shared Component FM

| .
VK, Ok=lui pho... pho s

SC-FM is identifiable

Given an assignment matrix R which is rank MK — (K — 1), the emission
matrix of an SC-FM is identifiable.

Proof Sketch:
dim(null(R")) = 0.

Therefore (Ol — 02)R ;ﬁ 0, V O1 7& Oz.

34 /40



Learning Example for Shared Component Factorial Model

> Gist: If the shared component s is incoherent, then we can identify it, and
reveal the other components.

Example Observations
TITITTIEYL
Obtained Components with SC-FM
s L6 [
b >4 /

Components with regular model-EM

ﬁq;?t‘f

B 2

FonNg (WA W

e kﬂd.'
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Learning Example for Shared Component Factorial Model

> Gist: If the shared component s is incoherent, then we can identify it, and
reveal the other components.

Example Observations
BB LO ST
Obtained Components with SC-FM
s L0 /
b >4 |/

Compongnts with regular model-EM
a4
o v~ - N

e i\ﬂd.'

> The shared component + incoherence assumption a bit too restrictive.
Can we think of another model?

35/40



FHMM ldentifiable Alternative 2

st~ Bernouilli(r), k€ {1,..., K} ﬂ G
1.1 1 1 i
rtK|rtK,1 ~ stKCat(AKrtK,l) T

1
rilr_1 ~ sy Cat(A r_y
r @ @
2

xlrd, ...l ~N([OY,...,0" ] |...| .01

r

> Identifiability follows similarly from the activation matrix R.

36
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Revealing FHMM Practical Algorithm

Practical Algorithm for Revealing FHMM

» Cluster the data matrix X € R™7 into clusters X¢ € R-X€.

» Solve:
min|| X* — X°H||F + BIIH])1,
s.t. Hii =0, for1 <i<C,

H >0,

where H € RE*€,
» Construct a bi-partite graph by reading the solution for H.



Revealing FHMM Practical Algorithm

Practical Algorithm for Revealing FHMM

» Cluster the data matrix X € R™7 into clusters X¢ € R-X€.

» Solve:
min|| X* — X°H||F + BIIH])1,
s.t. Hii =0, for1 <i<C,
H >0,

where H € RE*€,
» Construct a bi-partite graph by reading the solution for H.

» Condition for learnability: Let O; = [xo, x1], O2 = [y0, y1]. Observed
combinations needs to form a connected bi-partite graph (Connectivity)
(linear number of edges in number of components, not quadratic), and we
need to observe all nodes and edges (Observability).
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Unsupervised audio source separation example

> We mixed recording of double bass and flute (at 0dB).

> The observed mixtures satisfy the connectivity constraint.

Original Mixture

Reconstruction

—

SR -

frue 5ource 1

Estimated Source 1

——

—

= -

Irue 5ource Z

Estimated Source Z

> We obtain almost perfect source separation.



Sensitivity on number of clusters

30

25 30 35 40 45 50
Number of clusters C

» The algorithm is robust to the choice of number of clusters C.
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Conclusions on FHMM

Identifiability: The original FHMM model is unidentifiable.

Identifiable Alternatives: There exists identifiable alternatives which are

globally learnable under stringent assumptions.

» Unsupervised Source Separation: Revealing FHMM works well under the
connectedness and observability assumptions.

> Future work:

> Can we relax the observability assumption so that we only require to

observe less nodes in the connectivity graph?
> Potential application in semi-supervised source separation.
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