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Sequence Modeling

I E.g. Speech, Handwriting, Music, Text, Finance, and
I Uber
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Familiar Sequence Modeling Approaches

I Latent Variable Sequence Modeling
I HMM/LDS: p(x1:T ) =

∑
h1:T

∏
t p(xt |ht )p(ht |ht−1)

h1
1 h1

2
. . . h1

T

x1 x2 . . . xT

I Fully Observed Sequence Modeling
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Familiar Sequence Models

Mixture of Markov Models

hn

x1,n x2,n . . . xTn,n

n = 1 . . . N

[Subakan, et al. 2013]

Factorial HMM
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Maximum Likelihood via EM

I Maximum Likelihood is the first thing that comes to mind:

max
θ

log p(x |θ) = max
θ

log
∑

h

p(x , h|θ)

I We can use Jensen’s inequality by injecting a logarithm, and the
distribution q(h):

log
∑

h

p(x , h|θ)
q(h)

q(h)
= logEq(h)

[
p(x , h|θ
q(h)

]
≥ Eq(h) [log p(x , h|θ)] + Hq

I This objective is in general not jointly convex.

I Is there an alternative method which yields a global solution for this?

I (Probably) No. (P 6= NP). But there are “close” problems which are
easier to solve.
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Global vs Local

Disclaimer: We will not necessarily go to the red summit.
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Example Problems with Global (Unique) Solutions

I Convex optimization problems. (Some convex problems are not poly-time
solvable though)

I Non-Convex canonical example:

min
U,Σ,V

‖X − UΣV>‖F

U>U = I ,

V>V = I ,

Σ ≥ 0, diagonal

I Rayleigh Quotient

I Procrustes Problem

I Sinusoid Estimation (ESPRIT)

I Method of Moments for Latent Variable Models

I Dictionary learning. (under assumptions)
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The other way: Method of Moments

I The idea is to estimate the models parameters µ1:K by solving a system of
non-linear equations formed with moments E[gk (x)], k ∈ {1, . . .K}:

E[g1(x)] =f1(µ1:K )

...

E[gK (x)] =fK (µ1:K )

I Canonical Example: x ∼ G(a, b):

E[x ] =ab

E[x2] =ab2 + a2b2

→ b̂ =(E[x2]− E[x ]2)/E[x ]

â =E[x ]2/(E[x2]− E[x ]2)

I This is not as statistically efficient as ML (CRLB). But the problem is
(usually) “easier”.
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Method of Moments for LVMs

MoM for spherical GMM: [Hsu, Kakade 13]

hn

xn

n = 1 . . . N

h ∼ Cat(π)

x |h ∼ N (µh, σ
2I )
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Method of Moments for a GMM

I Form the system of equations:

M2 :=E[x ⊗ x ]− garbage =
K∑

k=1

πk µk ⊗ µk

M3 :=E[x ⊗ x ⊗ x ]− garbage =
K∑

k=1

πk µk ⊗ µk ⊗ µk
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Obtaining the parameters

I Whiten M3 with a matrix W , such that:

W>M2W = I

.

I Then the eigenvectors of

M̃3 =
K∑

k=1

wk (W>µ)⊗ (W>µ)⊗ (W>µ)

are obtainable via power iterations.
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How general are moment methods?

(and where do I come in)

I PCA

I ICA papers from 90s [mainly Cardoso]

I System ID literature from 90s. (Kalman Filters)

I Inference in HMMs [Hsu et al. 09]

I Parameter Estimation in HMMs [Anandkumar et al. 12, 14]

I Multiview Discrete/Mixture Models [Anandkumar et al. 12]

I Inference in general trees [Parikh et al. 12]

I Single View Spherical GMMs [Hsu, Kakade, 13]

I Parameter estimation in somewhat general graphs [Chaganty, Liang 14]

I Framework for HMMs with special transition structures. [Me et al., 14,15]

I Attempts on Neural Networks [Anandkumar, 15,16]
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Spectral Learning of Mixture of HMMs

[Smyth, 97]

Ak r1,n r2,n . . . rTn,n

hn

Ok x1,n x2,n . . . xTn,n

k = 1 . . . K n = 1 . . . N

hn ∼ Categorical(πn)

xn ∼ HMM(An,On)

I Learning Goal: Estimate πn,An,On, given x1:N
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Mixture of HMMs

r1,n r2,n . . . rTn,n

hn

x1,n x2,n . . . xTn,n

n = 1 . . . N

hn ∼ Categorical(πn)

xn|hn ∼ HMM(ρhn ,Ahn ,Ohn )

E[x2 ⊗ x1] =
∑
h,r1

ρhπh (E[x2|r1, h]⊗ E[x1|r1, h])

=
∑
h,r1

ρhπh

(∑
r2

A(r1, r2, h)µr2,h

)
⊗ µr1,h

=OflatAbdiag diag(ρ⊗ π)O>flat

Problem: The moment estimator is agnotic to the block structure of the
model.
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Mixture of HMMs

I An MHMM with local parameters θ1:K = (O1:K ,A1:K , ν1:K , π) is an HMM
with global parameters θ̄ = (Ō, Ā, ν̄), where:

Ō =
[
O1 . . . OK

]
, Ā =


A1 0 . . . 0
0 A2 . . . 0

. . .

0 0 . . . AK

 , ν̄ =


π1ν1

π2ν2

...
πKνK

 .

I How to impose this structural constraint on the estimator?
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Two stage estimation for HMMs

HMM-Mixture model equivalence, [Kontorovich et al., 13]

An HMM with state marginals p(ht) is equivalent to a mixture model with
mixing weights π := 1

T

∑T
t=1 p(ht), and the same emission parameters.

I First compute (estimate) Ô, and p̂i .

I Then solve the convex problem:

min
A
‖M2 − ÔAdiag(π̂)Ô‖F

s.t. 1>A = 1>,

A ≥ 0.
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Two stage estimation framework with structural constraints:

Two stage estimation framework

I Get rough/permuted estimates for the parameters Ô, Â, π̂.

I De-permute A. (Solve the graph problem dictated by model)

I Solve:

min
A
‖M2 − ÔAdiag(π̂)Ô‖F

s.t. 1>A = 1>,

A ≥ 0.

f (M,A) = 0

I f , and M depend on the model.

19 / 40



Structural Constraints wrt. Model

The framework handles these models:

I MHMM: f (M,A) = A� (1−M) = 0. M is block diagonal.

I SHMM: f (M,A) = A� (1−M)− B̂ ⊗ 1
M

1M 1>M = 0. M is block
diagonal.

I Left-to-Right HMM: f (M,A) = A� (1−M) = 0, estimate M with a
greedy graph traversal algorithm. M is lower triangular.

I Bakis HMM: f (M,A) = A� (1−M) = 0, M corresponds to an
Hamiltonian circuit (TSP approximation). M is binary lower first
uni-triangular.

I HMM with mixture emissions: f (M,Ai,j ) = Ai,j 1>.
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Mixture of HMMs: De-permutation

I lime→∞ Āe = [v̄11>M , v̄21>M , . . . , v̄K 1>M ], where v̄k is the k ′th eigenvector
of Ā.
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Mixture of HMMs: De-permutation

I lime→∞ Āe = [v̄11>M , v̄21>M , . . . , v̄K 1>M ], where v̄k is the k ′th eigenvector
of Ā.
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MHMM De-permutation Continued

I But we can estimate the number of HMMs:
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  Spectral Longevity of Eigenvalues  

I Then form rank-K̂ reconstruction Ar :

Ar = V1:K̂ Λ1:K̂V
−1

I Then Cluster. (A La Spectral Clustering)
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Experimental Results

Digit clustering with MHMMs:

Algorithm 1v2 1v3 1v4 1v5 2v3 2v4 2v5

Spectral 100 70 54 55 83 99 99
EM init. w/ Spectral 100 99 100 100 96 100 100
EM init. at Random 96 99 98 54 83 100 100
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Switching HMM

h1 h2
. . . hT

r1 r2 . . . rT

x1 x2 . . . xT

ht |ht−1 ∼ Cat(B(:, ht−1))

rt |rt−1, ht , ht−1 ∼ [ht = ht−1]Cat(A(:, rt−1, ht))

+ [ht 6= ht−1]U(.)

xt |ht , rt ∼ p(xt |ht , rt)
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Switching HMM

I An SHMM with local parameters θ1:K = (O1:K ,A1:K , ν1:K ,B) is an HMM
with global parameters θ̄ = (Ō, Ā, ν̄), where:

Ō =
[
O1 . . . OK

]
, Ā =


B1,1A1 B1,2

11>

M
. . . B1,M

11>

M

B2,1
11>

M
B2,2A2 . . . B2,M

11>

M

. . .

BM,1
11>

M
BM,2

11>

M
. . . BM,MAK

 ,
ν̄ =

[
π1ν1 π2ν2 . . . πKνK

]>
.

I How to impose this structural constraint on the estimator?

I Use the same de-permutation method as MHMM.
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MHMM-SHMM spectrum

I Ai,i ∼ Dirichlet(1, . . . , 1), B =

[
α 1− α

1− α α

]
.

α = 0.00 α = 0.11 α = 0.22 α = 0.33 α = 0.44 α = 0.55 α = 0.66 α = 0.77 α = 0.88 α = 0.99
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Bakis-HMM

I Is an HMM that can only move one state at a time.

I A =


1 0 . . . 0 0
1 1 . . . 0 0

0 . . .
. . . . . . 0

0 . . . 1 1 0
0 . . . 0 1 1


I Every state is visited exactly once.

I Depermutation: Find a maximum weight Hamiltonian circuit on Â.
(Traveling Salesman problem)

ATG TGG GGC

GCGCGTGTGTGCGCA

CAA AAT
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Experimental Results

Synthetic Data experiment:
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Impressions on MoM:

I Good:
I Global
I Initialization: No need to worry about initialization. Also can initialize EM.
I Scalable: Computationally cheap: Gather the moments, factorize a small

matrix.
I Interesting/Theoretical: Bounds.
I Subroutine: Potentially can be used as a subroutine under EM.

I Bad:
I Model Mismatch: Horrible in regards to model mismatch. (Hard

assumption on model Unlike ML, which minimizes KL(p‖q).
I Not as statistically efficient as ML.

I Ugly:
I You can get complex numbers for parameter estimates/likelihoods.
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Factorial HMM

[Ghahramani, Jordan; 97]

r1
1 r1

2
. . . r1

T

x1 x2 . . . xT

r2
1 r2

2
. . . r2

T

r 1
t |r 1

t−1 ∼ Cat(A1r 1
t−1)

...

rK
t |rK

t−1 ∼ Cat(AK rK
t−1)

xt |r 1
t , . . . , r

K
t ∼ N ([O1, . . . ,OK ]

 r 1
t

. . .

rK
t

 , σ2I )

31 / 40



Factorial HMM

[Ghahramani, Jordan; 97]

r1
1 r1

2
. . . r1

T

x1 x2 . . . xT

r2
1 r2

2
. . . r2

T

r 1
t |r 1

t−1 ∼ Cat(A1r 1
t−1)

...

rK
t |rK

t−1 ∼ Cat(AK rK
t−1)

xt |r 1
t , . . . , r

K
t ∼ N ([O1, . . . ,OK ]

 r 1
t

. . .

rK
t

 , σ2I )

X = O︸︷︷︸
The dictionary

R︸︷︷︸
Activations

+ ε︸︷︷︸
noise
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Some Dictionary Learning Perspective..

I General Dictionary Learning

min
O,R
‖X − O︸︷︷︸

Dictionary

R︸︷︷︸
Activations

‖F

I PCA: Both O and R are orthogonal.
I ICA: Solvable if R has independent coordinates.
I Mixture Model: R is one sparse. Solvable is O has full column rank.
I Sparse Dictionary Learning: Solvable if O is square and R is sparse

Bernouilli-Gaussian. [Spielman et al. 12]

I Factorial Models:

O =
[
O1 . . . OK

]
, R =

R
1

...
RK


I No constraint on O, columns of R are block-K sparse.
I No Unique Solution!!!
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FHMM Identifiability

Rank Deficiency

rank(R) ≤ MK − (K − 1)

Proof Sketch:
dim(null(R>)) ≥ K − 1.

Therefore from rank-nullity theorem rank(R) = MK − (K − 1).

FHMM is unidentifiable

For a given assignment matrix R ∈ RKM×T There exists O1 6= O2 such that∏
t N (xt |O1R, σ

2I ) =
∏

t N (xt |O2R, σ
2I ).

Proof: Since dim(null(R>)) ≥ K − 1, (O1 − O2)R = 0, for O1 6= O2.
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FHMM Identifiable Alternative 1

Shared Component FM

∀k, Ok =

µ1
k µk

2 . . . µk
M−1 s


SC-FM is identifiable

Given an assignment matrix R̃ which is rank MK − (K − 1), the emission
matrix of an SC-FM is identifiable.

Proof Sketch:
dim(null(R>)) = 0.

Therefore (O1 − O2)R 6= 0, ∀ O1 6= O2.
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Learning Example for Shared Component Factorial Model

I Gist: If the shared component s is incoherent, then we can identify it, and
reveal the other components.

Example Observations

Obtained Components with SC-FM

Components with regular model-EM

I The shared component + incoherence assumption a bit too restrictive.
Can we think of another model?
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FHMM Identifiable Alternative 2

sk
t ∼ Bernouilli(π), k ∈ {1, . . . ,K}

r 1
t |r 1

t−1 ∼ s1
t Cat(A1r 1

t−1)

...

rK
t |rK

t−1 ∼ sK
t Cat(AK rK

t−1)

xt |r 1
t , . . . , r

K
t ∼ N ([O1, . . . ,OK ]

 r 1
t

. . .

rK
t

 , σ2I )

s1
1 s1

2
. . . s1

T

r1
1 r1

2
. . . r1

T

x1 x2 . . . xT

r2
1 r2

2
. . . r2

T

s2
1 s2

2
. . . s2

T

I Identifiability follows similarly from the activation matrix R.
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Revealing FHMM Practical Algorithm

Practical Algorithm for Revealing FHMM

I Cluster the data matrix X ∈ RL×T into clusters X c ∈ RL×C .

I Solve:

min
H
‖X c − X cH‖2

F + β‖H‖1,

s.t. Hi,i = 0, for 1 ≤ i ≤ C ,

H ≥ 0,

where H ∈ RC×C .

I Construct a bi-partite graph by reading the solution for H.

I Condition for learnability: Let O1 = [x0, x1], O2 = [y0, y1]. Observed
combinations needs to form a connected bi-partite graph (Connectivity)
(linear number of edges in number of components, not quadratic), and we
need to observe all nodes and edges (Observability).
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Unsupervised audio source separation example

I We mixed recording of double bass and flute (at 0dB).

I The observed mixtures satisfy the connectivity constraint.

Original Mixture Reconstruction

True Source 1 Estimated Source 1

True Source 2 Estimated Source 2

I We obtain almost perfect source separation.
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Sensitivity on number of clusters

5 10 15 20 25 30 35 40 45 50

Number of clusters C
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d
B
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SAR

I The algorithm is robust to the choice of number of clusters C .
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Conclusions on FHMM

I Identifiability: The original FHMM model is unidentifiable.

I Identifiable Alternatives: There exists identifiable alternatives which are
globally learnable under stringent assumptions.

I Unsupervised Source Separation: Revealing FHMM works well under the
connectedness and observability assumptions.

I Future work:
I Can we relax the observability assumption so that we only require to

observe less nodes in the connectivity graph?
I Potential application in semi-supervised source separation.
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