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Generative Models

h ~ p(hl6)
x|~ p(x|h,6) = pour(x; fo(h))
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Generative Models

h ~ p(hl6)
x|~ p(x|h,6) = pour(x; fo(h))

» Maximum Likelihood learning:

max E[log p(x|0)]

A max Z log p(xn|0)

= meaxz Iogz p(xn, hn|0) = mgaxz log Z p(xn; fo(hn))
n hp n hn
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Generative Models

h ~ p(hl6)
x|~ p(x|h,6) = pour(x; fo(h))

» Maximum Likelihood learning:

max E[log p(x|0)]

A max zn: log p(xn|0)
= meaxz Iogz p(xn, hn|0) = mgaxz log Z p(xn; fo(hn))
n hp n hn

> Major problem with this:
> What is p(x|h, 0)? (Gaussian, Poisson, Smaragdisian?, Me-ian?)

6
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Implicit Generative Model

h ~ p(hl6)
x|h ~ 6(x — fo(h))



Implicit Generative Model

» But what to do with this? What is this?

- 5(x—t):{°° x=t

0 else

h ~ p(hl6)
x|h ~ 6(x — fo(h))



Implicit Generative Model

» But what to do with this? What is this?
=t
b ox—t) =4 X7 F
0 else
> X = fg(h)

h ~ p(hl6)
x|h ~ 6(x — fo(h))



Implicit Generative Model

h ~ p(h|6)
x|h ~ 6(x — fo(h))

» But what to do with this? What is this?

=t
b ox—t) =4 X7 F
0 else
> X = fg(h)
» The usual gig is to marginalize h and maximize the likelihood. (Or

equivalently, minimize KL(pdata|| Pmodel))-
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Implicit Generative Model

h ~ p(h|6)
x|h ~ 6(x — fo(h))

» But what to do with this? What is this?

5(x—t):{°° x=t

0 else

v

v

X = fg(h)
The usual gig is to marginalize h and maximize the likelihood. (Or
equivalently, minimize KL(pdata|| Pmodel))-

v

v

Okay, what is pmodes in this case then?
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Here’'s your answer my friend

[Devroye, Non-Uniform Random Variate Generation, 1986]

Theorem 4.1.

Let X have distributlon functlon F, and let h:R —B be a strictly Increas-
ing function where B Is elther R or a proper subset of R. Then A (X)) Is a ran-
dom varlable with distributlon functlon F (h~%(z)).

If F has density f and k7! is absolutely contlnuous, then A (X') has denslty
(Y (z) f (A7 z)), foralmostallz .




Implicit Generative Model - Toy Example

> fy(h) = exp(h).

h ~ N(0,67)
x = exp(h)



Implicit Generative Model - Toy Example

h ~ N(0,67)
x = exp(h)

> fu(h) = exp(h).
» What is p(x)? - | don’t know directly, but | know that:

Pr(X < x) = Pr(fa(h) < x) =Pr(h < f; *(x))
Pr(exp(h) < x) =Pr(h < logx), (for x > 0)
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Implicit Generative Model - Toy Example

h ~ N(0,67)
x = exp(h)

> fu(h) = exp(h).
» What is p(x)? - | don’t know directly, but | know that:

Pr(X < x) = Pr(fa(h) < x) =Pr(h < f; *(x))
Pr(exp(h) < x) =Pr(h < logx), (for x > 0)

> | also know that:

o 9 log x
p(x) = aPr(h < logx) = a/ p(h)dh
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Toy Example - Continued

log x
p(x) = a%Pr(h < log x) =% p(h)dh, for x >0

— o0

ZEN(Iogx;O,UQ)

1 o < — log? x)
 \V2rox P 202
=LN(0,0%)

—Log-Normal!




Toy Example - Continued

0 0
p(x) = aPr(h < log x) = o

log x
p(h)dh, for x >0

— 00

ZENUOgX;O,O’Q)

1 oo [ = log? x
B V2mox P 202

—— normal (h)

—— lognormal, (e~h)
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Implicit Generative Model - Toy Example 2

h ~ N(0,5°)

x = h?

> f(h) = K.
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Implicit Generative Model - Toy Example 2
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x = h?

> fy(h) = h%.
> What is p(x)? - | don't know directly, but | know that:

Pr(X < x) =Pr(h < £, (x))
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Implicit Generative Model - Toy Example 2

h ~ N(0,5°)

x = h?

> fy(h) = h%.
> What is p(x)? - | don't know directly, but | know that:

Pr(X < x) =Pr(h < £, (x))

» Hm. fy(h) is not invertible?
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Implicit Generative Model - Toy Example 2

h ~ N(0,5°)

x = h?

> fo(h) = K.
> What is p(x)? - | don't know directly, but | know that:
Pr(X < x) =Pr(h < £, (x))
» Hm. fy(h) is not invertible?
» But: Pr(h* < x) = Pr(Jh| < v/x) = Pr(h < v/x) — Pr(h < —/x), for

x > 0.

11/32



Implicit Generative Model - Toy Example 2

VX —V/x
p(x) = %Pr(X < logx) :g (/ p(h)dh — /7 (h)dh) >0

2\/>( (Vx;0,06%) + N(— \/;(;0,02))

-1 (exp(fx/Zaz))

2TXxo

—Chi-squared distribution.



Implicit Generative Model - Toy Example 2

VX —Vx
p(x) = %Pr(X < logx) :82)( </ p(h)dh — /7 p(h)dh)

2\/>( (Vx;0,06%) + N(— \/;(;0,02))

-1 (exp(fx/202))

2w xo
—Chi-squared distribution.

—— normal (h)
~—— lognormal, (e~h)
—— chi-squared, (h~2)

>0



Implicit Generative Model - Real Case

h ~N(0,67)
X = fg(h)

> fy(h) is an arbitrary function now. Let’s consider a one dimensional neural
net, such that fy(h) = o(6h), where o(.) is some typical neural net
non-linearity.
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> fy(h) is an arbitrary function now. Let’s consider a one dimensional neural
net, such that fy(h) = o(6h), where o(.) is some typical neural net
non-linearity.

» Can we analytically derive p(x) now? Maybe. But let's consider what we
need to do in the general case.
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Implicit Generative Model - Real Case

h ~N(0,67)
X = fg(h)

> fy(h) is an arbitrary function now. Let’s consider a one dimensional neural
net, such that fy(h) = o(6h), where o(.) is some typical neural net
non-linearity.

» Can we analytically derive p(x) now? Maybe. But let's consider what we
need to do in the general case.

> p(x) =2 Sy (< P(M)dh. — for all x € R, we need to find the set
{h:f(h) <x,h€R}. In 1-D, we can hope to do something numerically.

13 /32



Visualizing output densities

fo = tanh(1.4h + 0.2)

Nonlinearity: tangent

h cdf pdf
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(Jaggedness is due to numerical issues)
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Visualizing output densities

fy = tanh(1.4 tanh(1.4 tanh(1.4h + 0.2) + 0,2) 4 0.2)

Nonlinearity: tangent_deep

h cdf pdf
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Visualizing output densities

fo = log(exp(h+0.2) + 1)

Nonlinearity: softplus

h cdf pdf
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Multidimensional Case

> In the multidimensional case, we need to compute the set
S(x) :={h: fa(h) < x,h € R¥ x € R*}. To compute the
multi-dimensional pdf:

9

p) =~ [ p(h)dh

heS(x)
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multi-dimensional pdf:

9

p) =~ [ p(h)dh

heS(x)

» We cannot explicitly compute this set in practice.

17 /32



Multidimensional Case

> In the multidimensional case, we need to compute the set
S(x) :={h: fa(h) < x,h € R¥ x € R*}. To compute the
multi-dimensional pdf:

9

p) =~ [ p(h)dh

heS(x)

» We cannot explicitly compute this set in practice.

> But we still need an handle on pmogei(.) to train our forward mapping f(.).
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Multidimensional Case

> In the multidimensional case, we need to compute the set
S(x) :={h: fa(h) < x,h € R¥ x € R*}. To compute the
multi-dimensional pdf:

9

p) =~ [ p(h)dh

heS(x)

» We cannot explicitly compute this set in practice.
> But we still need an handle on pmogei(.) to train our forward mapping f(.).

» Good news: It is very easy to sample from implicit generative models!

17 /32



Plan

Training Implicit Generative Models
Moment Matching
Ratio Estimation
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Implicit Generative Models

Training Implicit Generative Models
Moment Matching
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Training the forward model by moment-matching:

» We can match the expected output moment with data moments:

min [[Epn)[(fo (h))] = Epyy, (s [ (e ) 12,

1< 1 & i
data
N;S(f@(hn) N ZS(XH/ )

n’=1

X~ min
0

2

where s(.) is some summary statistics (e.g. covariance).

20/32



Moment Matching in Action

fa(h) = Watanh(Wih + by) + by

Situation at iteration 0

® Generated Data
% True Data

-17.5 -15.0 -125 -10.0 -75 -5.0 -25 0.0
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Moment Matching in Action

-2

fa(h) = Watanh(Wih + by) + by

Situation at iteration 50

® Gorented Data
X TueDats

-17.5

-15.0

-125
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Moment Matching in Action

fa(h) = Watanh(Wih + by) + by

Situation at iteration 100

® Gorented Data
X TueDats

-17.5 -15.0 -12.5 -10.0 -75 -5.0 -25

21/32



Moment Matching in Action

fa(h) = Watanh(Wih + by) + by

Situation at iteration 200

® Gorented Data
12 X TueDats

-18 -16 -14 -12 -10 -8 -6
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Moment Matching in Action

fg(h) = W, tanh(Wlh —+ bl) + b

Situation at iteration 300

@ GerentaaDam
% Toe Datz

-18 -16 -14 -12 -10
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Moment Matching in Action

fa(h) = Watanh(Wih + by) + by

Situation at iteration 400

® Gerersted D
12 X Tuebats

-18 -16 -14 -12 -10

Seems to work fine in this toy case.
But what would happen with slightly more difficult data?
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Moment Matching in action, case 2

Situation at iteration 0

#® Generated Data
% True Data

-17.5 -15.0 -125 -10.0 -75 -5.0 25 0.0

22/32



Moment Matching in action, case 2

Situation at iteration 50

@ Gererated Data
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Moment Matching in action, case 2

Situation at iteration 100

@ Gererated Data

-15 -10 -5 o 5 10 15
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Moment Matching in action, case 2

Situation at iteration 1000

Senerstzd Data
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Moment Matching in action, case 2

Situation at iteration 2000

® Genented Dt
20 X Tue Data
10
o
-10
-20
®,,
-15 -10 -5 o 5 10
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Moment Matching in action, case 2

Situation at iteration 2900

® Gerented Data
20 X e Data
10
0
-10
-20
o )
L )
-15 -10 - 0 H 10

Horrible, but expected.
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Moment Matching in action, case 2

Situation at iteration 2900

® GerentadData
X TweDa

Horrible, but expected.
Choice of sufficient statistics is crucial - this is against the point.
Can we do something more agnostic?

22/32
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Implicit Generative Models

Training Implicit Generative Models

Ratio Estimation
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Ratio Estimation

Now let's consider this mixture model:

y ~ BE(m)

x|y ~ Pmodel (})Y =% paata(x) P

» y = 0, means generated from the model, y = 1 means the item is from
the dataset. Write the joint distribution:

p(X7y) = (meodel(X))[y:O] ((1 — W)pdata(X))[y:ﬂ

Then what are the class posteriors p(y = 0|x), and p(y = 1|x)?

32



Ratio Estimation

Now let's consider this mixture model:

y ~ BE(m)

x|y ~ Pmodel (})Y =% paata(x) P

» y = 0, means generated from the model, y = 1 means the item is from
the dataset. Write the joint distribution:

p(x, ) = (7Pmoder (%)Y~ (1 = ) Paara (x)) "~
Then what are the class posteriors p(y = 0|x), and p(y = 1|x)?

> Apply Bayes' rule:

o — (Pmoder (X)) (1 — ) puara)
P = e s () T (1~ M) pana ()

32



Ratio Estimation - continued

» Now let's write down the log likelihood for the posterior over y (and
assume m = 0.5, which you don't have to but original paper does):

log p(y1n[x) = > [y = 1]log r(xn) + [y = 0] log 1 — r(xn),

Pdata(X)

where r(x) 1= ——fe .

32



Ratio Estimation - continued

» Now let's write down the log likelihood for the posterior over y (and
assume m = 0.5, which you don't have to but original paper does):

log p(y1n[x) = > [y = 1]log r(xn) + [y = 0] log 1 — r(xn),

_7 Pdata(X)
where r(x) := m'

» But, we do not know these densities, do we? Whatever, let's try to
“learn” r(x) from data. Let's replace it with a parametric binary classifier
D¢(x), and call log p(y|x), L(&,0):

L(€,0) = ZLyn = 1] log D¢(xn) + [yn = 0] log 1 — Dg(xn),
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Ratio Estimation - continued

» Now let's write down the log likelihood for the posterior over y (and
assume m = 0.5, which you don't have to but original paper does):

log p(y1n[x) = > [y = 1]log r(xn) + [y = 0] log 1 — r(xn),

_7 Pdata(X)
where r(x) := Pdata(xgipmode/(x).

» But, we do not know these densities, do we? Whatever, let's try to

“learn” r(x) from data. Let's replace it with a parametric binary classifier
D¢(x), and call log p(y|x), L(&,0):

n

L(&,0) = [yn = 1]log De(xn) + [yn = 0] log 1 — De(xn),

> Also get rid of the model/data indicators y1.y using our implicit generative
model:

L(E,0)= ) logDe(xa)+ Y logl— De(fy(hn)),
n:lyn=1] n:[yn=0]

» Now, maximize with respect to £ to approximate r(x) as best as possible.
Minimize with respect 6 to maximize pmodel/(Pmodel + Pdata)-

32



Ratio Estimation - continued

» Now, maximize with respect to £ to approximate r(x) as best as possible.
Minimize with respect 6 to maximize pmodel/(Pmodel + Pdata)-

mein mgax[,(g,e) = mein mgaxz log De(xn) + Z log 1 — De(fo(hn)),

> Here's your glorified Generative Adversarial Network! In practice you do:
(actually don't) 5 iterations of:

m{axz log De(xn) + Z log1 — D¢ (fo(hn)),

Then, flip the signs and do:

mé'axz log D¢ (fa(hn)),



A “By the way” slide:

> The 'best’ strategy:

/Iog D(x)pdata(x)dx + / log(1 — D(x))Pmoder(x)dx

~ > [yn = 1]log De(xa) + Y _[ya = 0]log 1 — De(xa),



A “By the way” slide:

> The 'best’ strategy:

/Iog D(x)pdata(x)dx + / log(1 — D(x))Pmoder(x)dx

~ > [yn = 1]log De(xa) + Y _[ya = 0]log 1 — De(xa),
» Therefore the optimal classifier D(x) is:

5 ([ 108 DLopan)a + [ log(t = Do) = 0
Pdata(x) medel(X) _
D) 1-D(x) °
pdata(X)
Pdata(x) + medeI(X)

—D*(x) =




Let’s see some GAN action

fo(h) = Wh tanh(Whh + by) + b, (Same forward mapping as before)

Situation at iteration 0

® Generated Data
% True Data
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Let’s see some GAN action
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Let’s see some GAN action

fo(h) = Wh tanh(Whh + by) + b, (Same forward mapping as before)

Situation at iteration 500

® Gorented Data
X TueDats
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Let's see some GAN action

fo(h) = Wh tanh(Whh + by) + b, (Same forward mapping as before)

Situation at iteration 800

25 @ Generated Data
% Tus Do
DN0.0
RN
20
15
o s
10 g
5
S L
| 0300 E -
(J
o L]
[ o0 >
L]
_ )
S L)
%, .
-10
=30 =25 =20 =15 =10 =5 o
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Let’s see some GAN action

fo(h) = Wh tanh(Whh + by) + b, (Same forward mapping as before)

Situation at iteration 1000
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Let’s see some GAN action

fo(h) = Wh tanh(Wih + b1) + b, (Same forward mapping as before)

Situation at iteration 1200

25 @ Gererstea D
X Tue data
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Let’s see some GAN action

fo(h) = Whtanh(Wih + b1) + b, (Same forward mapping as before)

Situation at iteration 2900

® Gorented Data
X TueData

Seems to work fine in this toy case.
But what would happen in our good old mixture example?
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More GAN action

fo(h) = Wh tanh(Whh + by) + b, (Same forward mapping as before)

Situation at iteration 0

® Generated Data
% True Data
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More GAN action

fo(h) = Wh tanh(Whh + by) + b, (Same forward mapping as before)

Situation at iteration 100
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More GAN action

fo(h) = Wh tanh(Whh + by) + b, (Same forward mapping as before)

Situation at iteration 200

® Gorented Data
X TueDats

29/32



More GAN action

fo(h) = Wh tanh(Whh + by) + b, (Same forward mapping as before)

Situation at iteration 500

® Gorented Data
X TueDats
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More GAN action

fo(h) = Wh tanh(Whh + by) + b, (Same forward mapping as before)

Situation at iteration 1200
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More GAN action

fo(h) = Wh tanh(Wih + b1) + b, (Same forward mapping as before)

Situation at iteration 2400

—20
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More GAN action

fo(h) = Wh tanh(Wih + by) + b, (Same forward mapping as before)

Situation at iteration 2900

Sometimes we see this “smearing” behavior.
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More GAN action

fo(h) = Wh tanh(Whh + by) + b, (Same forward mapping as before)

—20

Situation at iteration 0

® Generated Data
% True Data
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More GAN action

fo(h) = Wh tanh(Whh + by) + b, (Same forward mapping as before)

Situation at iteration 100

® Gorented Data
X TueDats
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More GAN action

fo(h) = Wh tanh(Whh + by) + b, (Same forward mapping as before)

—20

Situation at iteration 200
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More GAN action

fo(h) = Wh tanh(Wih + b1) + b, (Same forward mapping as before)

Situation at iteration 500
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More GAN action

fo(h) = Wh tanh(Wih + by) + b, (Same forward mapping as before)

Situation at iteration 1200

Sometimes generator “collapses onto” a subset of the modes.
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Little bit on collapsing

» Mode collapse is a big issue.

> Wasserstein-Gans (which approximately minimizes Wasserstein-1 distance
between Pmoder(x), and paata(x). This results in smoother gradients.

» Bayesian GANs [Saatci, 2017], integrates out 6 and £. Claim is that the
additional work pays off very well.

31/32



Conclusions:

> We looked at the implicit generative models.
> GANSs are a special case of implicit generative model learning.
» Things | couldn’t discuss: Wasserstein GANs, f-GANs.
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