Implicit Generative Models

Cem Subakan

University of Illinois at Urbana-Champaign CS598PS Guest Lecture 2

November 17'th, 2017

$$
: \frac{0}{0}: \frac{0}{0}: \frac{0}{0}: \frac{0}{0}: \frac{0}{0}: \frac{0}{0}: \frac{0}{0}: \frac{0}{0}
$$

$$
\frac{0}{0}
$$

Outline

Implicit Generative Models

Training Implicit Generative Models
Moment Matching

Ratio Estimation

Plan

Implicit Generative Models

Training Implicit Generative Models
Moment Matching
Ratio Estimation

Generative Models

$$
\begin{aligned}
h & \sim p(h \mid \theta) \\
x \mid h & \sim p(x \mid h, \theta)=p_{\text {out }}\left(x ; f_{\theta}(h)\right)
\end{aligned}
$$

Generative Models

$$
\begin{aligned}
h & \sim p(h \mid \theta) \\
x \mid h & \sim p(x \mid h, \theta)=p_{\text {out }}\left(x ; f_{\theta}(h)\right)
\end{aligned}
$$

- Maximum Likelihood learning:

$$
\begin{aligned}
& \max _{\theta} \mathbb{E}_{x}[\log p(x \mid \theta)] \\
\approx & \max _{\theta} \sum_{n} \log p\left(x_{n} \mid \theta\right) \\
= & \max _{\theta} \sum_{n} \log \sum_{h_{n}} p\left(x_{n}, h_{n} \mid \theta\right)=\max _{\theta} \sum_{n} \log \sum_{h_{n}} p\left(x_{n} ; f_{\theta}\left(h_{n}\right)\right)
\end{aligned}
$$

Generative Models

$$
\begin{aligned}
h & \sim p(h \mid \theta) \\
x \mid h & \sim p(x \mid h, \theta)=p_{\text {out }}\left(x ; f_{\theta}(h)\right)
\end{aligned}
$$

- Maximum Likelihood learning:

$$
\begin{aligned}
& \max _{\theta} \mathbb{E}_{x}[\log p(x \mid \theta)] \\
\approx & \max _{\theta} \sum_{n} \log p\left(x_{n} \mid \theta\right) \\
= & \max _{\theta} \sum_{n} \log \sum_{h_{n}} p\left(x_{n}, h_{n} \mid \theta\right)=\max _{\theta} \sum_{n} \log \sum_{h_{n}} p\left(x_{n} ; f_{\theta}\left(h_{n}\right)\right)
\end{aligned}
$$

- Major problem with this:
- What is $p(x \mid h, \theta)$? (Gaussian, Poisson, Smaragdisian?, Me-ian?)

$$
\begin{aligned}
h & \sim p(h \mid \theta) \\
x \mid h & \sim \delta\left(x-f_{\theta}(h)\right)
\end{aligned}
$$

$$
\begin{aligned}
h & \sim p(h \mid \theta) \\
x \mid h & \sim \delta\left(x-f_{\theta}(h)\right)
\end{aligned}
$$

- But what to do with this? What is this?
- $\delta(x-t)=\left\{\begin{array}{ll}\infty & x=t \\ 0 & \text { else }\end{array}\right.$.

$$
\begin{aligned}
h & \sim p(h \mid \theta) \\
x \mid h & \sim \delta\left(x-f_{\theta}(h)\right)
\end{aligned}
$$

- But what to do with this? What is this?
- $\delta(x-t)=\left\{\begin{array}{ll}\infty & x=t \\ 0 & \text { else }\end{array}\right.$.
- $x=f_{\theta}(h)$.

$$
\begin{aligned}
h & \sim p(h \mid \theta) \\
x \mid h & \sim \delta\left(x-f_{\theta}(h)\right)
\end{aligned}
$$

- But what to do with this? What is this?
- $\delta(x-t)=\left\{\begin{array}{ll}\infty & x=t \\ 0 & \text { else }\end{array}\right.$.
- $x=f_{\theta}(h)$.
- The usual gig is to marginalize h and maximize the likelihood. (Or equivalently, minimize $\left.K L\left(p_{\text {data }} \| p_{\text {model }}\right)\right)$.

$$
\begin{aligned}
h & \sim p(h \mid \theta) \\
x \mid h & \sim \delta\left(x-f_{\theta}(h)\right)
\end{aligned}
$$

- But what to do with this? What is this?
- $\delta(x-t)=\left\{\begin{array}{ll}\infty & x=t \\ 0 & \text { else }\end{array}\right.$.
- $x=f_{\theta}(h)$.
- The usual gig is to marginalize h and maximize the likelihood. (Or equivalently, minimize $\left.K L\left(p_{\text {data }} \| p_{\text {model }}\right)\right)$.
- Okay, what is $p_{\text {model }}$ in this case then?
[Devroye, Non-Uniform Random Variate Generation, 1986]

Theorem 4.1.

Let X have distribution function F, and let $h: R \rightarrow B$ be a strictly increasing function where B is elther R or a proper subset of R. Then $h(X)$ is a random variable with distribution function $F\left(h^{-1}(x)\right)$.

If F has density f and h^{-1} is absolutely contInuous, then $h(X)$ has density $\left(h^{-1}\right)^{\prime}(x) \quad f\left(h^{-1}(x)\right), \quad$ for almost all x.

$$
\begin{aligned}
& h \sim \mathcal{N}\left(0, \sigma^{2}\right) \\
& x=\exp (h)
\end{aligned}
$$

- $f_{\theta}(h)=\exp (h)$.

$$
\begin{aligned}
& x_{n}=1 \sim \mathcal{N}\left(0, \sigma^{2}\right) \\
& x=1 \ldots N=\exp (h)
\end{aligned}
$$

- $f_{\theta}(h)=\exp (h)$.
- What is $p(x)$? - I don't know directly, but I know that:

$$
\begin{aligned}
\operatorname{Pr}(X \leq x)=\operatorname{Pr}\left(f_{\theta}(h) \leq x\right) & =\operatorname{Pr}\left(h \leq f_{\theta}^{-1}(x)\right) \\
\operatorname{Pr}(\exp (h) \leq x) & =\operatorname{Pr}(h \leq \log x),(\text { for } x \geq 0)
\end{aligned}
$$

$$
\begin{aligned}
& h \sim \mathcal{N}\left(0, \sigma^{2}\right) \\
& x=\exp (h)
\end{aligned}
$$

- $f_{\theta}(h)=\exp (h)$.
- What is $p(x)$? - I don't know directly, but I know that:

$$
\begin{aligned}
\operatorname{Pr}(X \leq x)=\operatorname{Pr}\left(f_{\theta}(h) \leq x\right) & =\operatorname{Pr}\left(h \leq f_{\theta}^{-1}(x)\right) \\
\operatorname{Pr}(\exp (h) \leq x) & =\operatorname{Pr}(h \leq \log x),(\text { for } x \geq 0)
\end{aligned}
$$

- I also know that:

$$
p(x)=\frac{\partial}{\partial x} \operatorname{Pr}(h \leq \log x)=\frac{\partial}{\partial x} \int_{-\infty}^{\log x} p(h) d h
$$

Toy Example - Continued

$$
\begin{aligned}
p(x)=\frac{\partial}{\partial x} \operatorname{Pr}(h \leq \log x) & =\frac{\partial}{\partial x} \int_{-\infty}^{\log x} p(h) d h, \text { for } x \geq 0 \\
& =\frac{1}{x} \mathcal{N}\left(\log x ; 0, \sigma^{2}\right) \\
& =\frac{1}{\sqrt{2 \pi} \sigma x} \exp \left(\frac{-\log ^{2} x}{2 \sigma^{2}}\right) \\
& =\mathcal{L} \mathcal{N}\left(0, \sigma^{2}\right) \\
& \rightarrow \text { Log-Normal! }
\end{aligned}
$$

$$
\begin{aligned}
p(x)=\frac{\partial}{\partial x} \operatorname{Pr}(h \leq \log x) & =\frac{\partial}{\partial x} \int_{-\infty}^{\log x} p(h) d h, \text { for } x \geq 0 \\
& =\frac{1}{x} \mathcal{N}\left(\log x ; 0, \sigma^{2}\right) \\
& =\frac{1}{\sqrt{2 \pi} \sigma x} \exp \left(\frac{-\log ^{2} x}{2 \sigma^{2}}\right) \\
& =\mathcal{L N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& h \sim \mathcal{N}\left(0, \sigma^{2}\right) \\
& x=h^{2}
\end{aligned}
$$

- $f_{\theta}(h)=h^{2}$.

- $f_{\theta}(h)=h^{2}$.
- What is $p(x)$? - I don't know directly, but I know that:

$$
\operatorname{Pr}(X \leq x)=\operatorname{Pr}\left(h \leq f_{\theta}^{-1}(x)\right)
$$

$$
\begin{aligned}
& h \sim \mathcal{N}\left(0, \sigma^{2}\right) \\
& x=h^{2}
\end{aligned}
$$

- $f_{\theta}(h)=h^{2}$.
- What is $p(x)$? - I don't know directly, but I know that:

$$
\operatorname{Pr}(X \leq x)=\operatorname{Pr}\left(h \leq f_{\theta}^{-1}(x)\right)
$$

- Hm. $f_{\theta}(h)$ is not invertible?

- $f_{\theta}(h)=h^{2}$.
- What is $p(x)$? - I don't know directly, but I know that:

$$
\operatorname{Pr}(X \leq x)=\operatorname{Pr}\left(h \leq f_{\theta}^{-1}(x)\right)
$$

- Hm. $f_{\theta}(h)$ is not invertible?
- But: $\operatorname{Pr}\left(h^{2} \leq x\right)=\operatorname{Pr}(|h| \leq \sqrt{x})=\operatorname{Pr}(h \leq \sqrt{x})-\operatorname{Pr}(h \leq-\sqrt{x})$, for $x \geq 0$.

$$
\begin{aligned}
p(x)=\frac{\partial}{\partial x} \operatorname{Pr}(X \leq \log x) & =\frac{\partial}{\partial x}\left(\int_{-\infty}^{\sqrt{x}} p(h) d h-\int_{-\infty}^{-\sqrt{x}} p(h) d h\right), x \geq 0 \\
& =\frac{1}{2 \sqrt{x}}\left(\mathcal{N}\left(\sqrt{x} ; 0, \sigma^{2}\right)+\mathcal{N}\left(-\sqrt{x} ; 0, \sigma^{2}\right)\right) \\
& =\frac{1}{\sqrt{2 \pi x} \sigma}\left(\exp \left(-x / 2 \sigma^{2}\right)\right) \\
& \rightarrow \text { Chi-squared distribution. }
\end{aligned}
$$

$$
\begin{aligned}
p(x)=\frac{\partial}{\partial x} \operatorname{Pr}(X \leq \log x) & =\frac{\partial}{\partial x}\left(\int_{-\infty}^{\sqrt{x}} p(h) d h-\int_{-\infty}^{-\sqrt{x}} p(h) d h\right), x \geq 0 \\
& =\frac{1}{2 \sqrt{x}}\left(\mathcal{N}\left(\sqrt{x} ; 0, \sigma^{2}\right)+\mathcal{N}\left(-\sqrt{x} ; 0, \sigma^{2}\right)\right) \\
& =\frac{1}{\sqrt{2 \pi x} \sigma}\left(\exp \left(-x / 2 \sigma^{2}\right)\right) \\
& \rightarrow \text { Chi-squared distribution. }
\end{aligned}
$$

- $f_{\theta}(h)$ is an arbitrary function now. Let's consider a one dimensional neural net, such that $f_{\theta}(h)=\sigma(\theta h)$, where $\sigma($.$) is some typical neural net$ non-linearity.

- $f_{\theta}(h)$ is an arbitrary function now. Let's consider a one dimensional neural net, such that $f_{\theta}(h)=\sigma(\theta h)$, where $\sigma($.$) is some typical neural net$ non-linearity.
- Can we analytically derive $p(x)$ now? Maybe. But let's consider what we need to do in the general case.

- $f_{\theta}(h)$ is an arbitrary function now. Let's consider a one dimensional neural net, such that $f_{\theta}(h)=\sigma(\theta h)$, where $\sigma($.$) is some typical neural net$ non-linearity.
- Can we analytically derive $p(x)$ now? Maybe. But let's consider what we need to do in the general case.
- $p(x)=\frac{\partial}{\partial x} \int_{f_{\theta}(h) \leq x} p(h) d h . \rightarrow$ for all $x \in \mathbb{R}$, we need to find the set $\{h: f(h) \leq x, h \in \mathbb{R}\}$. In 1-D, we can hope to do something numerically.

Visualizing output densities

$$
f_{\theta}=\tanh (1.4 h+0.2)
$$

Nonlinearity: tangent

(Jaggedness is due to numerical issues)

$$
f_{\theta}=\tanh (1.4 \tanh (1.4 \tanh (1.4 h+0.2)+0,2)+0.2)
$$

Nonlinearity: tangent_deep

Visualizing output densities

$$
f_{\theta}=\log (\exp (h+0.2)+1)
$$

Nonlinearity: softplus

Multidimensional Case

- In the multidimensional case, we need to compute the set $\mathcal{S}(x):=\left\{h: f_{\theta}(h) \leq x, h \in \mathbb{R}^{K}, x \in \mathbb{R}^{L}\right\}$. To compute the multi-dimensional pdf:

$$
p(x)=\frac{\partial}{\partial x} \int_{h \in S(x)} p(h) d h
$$

Multidimensional Case

- In the multidimensional case, we need to compute the set $\mathcal{S}(x):=\left\{h: f_{\theta}(h) \leq x, h \in \mathbb{R}^{K}, x \in \mathbb{R}^{L}\right\}$. To compute the multi-dimensional pdf:

$$
p(x)=\frac{\partial}{\partial x} \int_{h \in S(x)} p(h) d h
$$

- We cannot explicitly compute this set in practice.

Multidimensional Case

- In the multidimensional case, we need to compute the set $\mathcal{S}(x):=\left\{h: f_{\theta}(h) \leq x, h \in \mathbb{R}^{K}, x \in \mathbb{R}^{L}\right\}$. To compute the multi-dimensional pdf:

$$
p(x)=\frac{\partial}{\partial x} \int_{h \in S(x)} p(h) d h
$$

- We cannot explicitly compute this set in practice.
- But we still need an handle on $p_{\text {model }}($.$) to train our forward mapping f_{\theta}($.$) .$

Multidimensional Case

- In the multidimensional case, we need to compute the set $\mathcal{S}(x):=\left\{h: f_{\theta}(h) \leq x, h \in \mathbb{R}^{K}, x \in \mathbb{R}^{L}\right\}$. To compute the multi-dimensional pdf:

$$
p(x)=\frac{\partial}{\partial x} \int_{h \in S(x)} p(h) d h
$$

- We cannot explicitly compute this set in practice.
- But we still need an handle on $p_{\text {model }}($.$) to train our forward mapping f_{\theta}($.$) .$
- Good news: It is very easy to sample from implicit generative models!

Plan

Implicit Generative Models

Training Implicit Generative Models
Moment Matching

Ratio Estimation

Plan

Implicit Generative Models

Training Implicit Generative Models
Moment Matching
Ratio Estimation

Training the forward model by moment-matching:

- We can match the expected output moment with data moments:

$$
\begin{aligned}
& \min _{\theta}\left\|\mathbb{E}_{p(h)}\left[s\left(f_{\theta}(h)\right)\right]-\mathbb{E}_{p_{\text {data }}\left(x_{\text {data }}\right)}\left[s\left(x_{\text {data }}\right)\right]\right\|_{2}^{2} \\
\approx & \min _{\theta}\left\|\frac{1}{N} \sum_{n=1}^{N} s\left(f_{\theta}\left(h_{n}\right)\right)-\frac{1}{N} \sum_{n^{\prime}=1}^{N} s\left(x_{n^{\prime}}^{\text {data }}\right)\right\|_{2}^{2}
\end{aligned}
$$

where $s($.$) is some summary statistics (e.g. covariance).$

Moment Matching in Action

$$
f_{\theta}(h)=W_{2} \tanh \left(W_{1} h+b_{1}\right)+b_{2}
$$

Moment Matching in Action

$$
f_{\theta}(h)=W_{2} \tanh \left(W_{1} h+b_{1}\right)+b_{2}
$$

Moment Matching in Action

$$
f_{\theta}(h)=W_{2} \tanh \left(W_{1} h+b_{1}\right)+b_{2}
$$

Seems to work fine in this toy case.
But what would happen with slightly more difficult data?

Moment Matching in action, case 2

Moment Matching in action, case 2

Situation at iteration 50

Moment Matching in action, case 2

Moment Matching in action, case 2

Moment Matching in action, case 2

Situation at iteration 2000

Moment Matching in action, case 2

Situation at iteration 2900

Horrible, but expected.

Moment Matching in action, case 2

Horrible, but expected.
Choice of sufficient statistics is crucial - this is against the point.
Can we do something more agnostic?

Plan

Implicit Generative Models

Training Implicit Generative Models
Moment Matching

Ratio Estimation

Ratio Estimation

Now let's consider this mixture model:

$$
\begin{aligned}
y & \sim \mathcal{B E}(\pi) \\
x \mid y & \sim p_{\text {model }}(x)^{[y=0]} p_{\text {data }}(x)^{[y=1]}
\end{aligned}
$$

- $y=0$, means generated from the model, $y=1$ means the item is from the dataset. Write the joint distribution:

$$
p(x, y)=\left(\pi p_{\text {model }}(x)\right)^{[y=0]}\left((1-\pi) p_{\text {data }}(x)\right)^{[y=1]}
$$

Then what are the class posteriors $p(y=0 \mid x)$, and $p(y=1 \mid x)$?

Ratio Estimation

Now let's consider this mixture model:

$$
\begin{aligned}
y & \sim \mathcal{B E}(\pi) \\
x \mid y & \sim p_{\text {model }}(x)^{[y=0]} p_{\text {data }}(x)^{[y=1]}
\end{aligned}
$$

- $y=0$, means generated from the model, $y=1$ means the item is from the dataset. Write the joint distribution:

$$
p(x, y)=\left(\pi p_{\text {model }}(x)\right)^{[y=0]}\left((1-\pi) p_{\text {data }}(x)\right)^{[y=1]}
$$

Then what are the class posteriors $p(y=0 \mid x)$, and $p(y=1 \mid x)$?

- Apply Bayes' rule:

$$
p(y \mid x)=\frac{\left(\pi p_{\text {model }}(x)\right)^{[y=0]}\left((1-\pi) p_{\text {data }}\right)^{[y=1]}}{\pi p_{\text {model }}(x)+(1-\pi) p_{\text {data }}(x)}
$$

Ratio Estimation - continued

- Now let's write down the log likelihood for the posterior over y (and assume $\pi=0.5$, which you don't have to but original paper does):

$$
\log p\left(y_{1: N} \mid x\right)=\sum_{n}\left[y_{n}=1\right] \log r\left(x_{n}\right)+\left[y_{n}=0\right] \log 1-r\left(x_{n}\right)
$$

where $r(x):=\frac{p_{\text {data }}(x)}{p_{\text {data }}(x)+p_{\text {model }}(x)}$.

Ratio Estimation - continued

- Now let's write down the log likelihood for the posterior over y (and assume $\pi=0.5$, which you don't have to but original paper does):

$$
\log p\left(y_{1: N} \mid x\right)=\sum_{n}\left[y_{n}=1\right] \log r\left(x_{n}\right)+\left[y_{n}=0\right] \log 1-r\left(x_{n}\right)
$$

where $r(x):=\frac{p_{\text {data }}(x)}{p_{\text {data }}(x)+p_{\text {model }}(x)}$.

- But, we do not know these densities, do we? Whatever, let's try to "learn" $r(x)$ from data. Let's replace it with a parametric binary classifier $D_{\xi}(x)$, and call $\log p(y \mid x), \mathcal{L}(\xi, \theta)$:

$$
\mathcal{L}(\xi, \theta)=\sum_{n}\left[y_{n}=1\right] \log D_{\xi}\left(x_{n}\right)+\left[y_{n}=0\right] \log 1-D_{\xi}\left(x_{n}\right)
$$

Ratio Estimation - continued

- Now let's write down the log likelihood for the posterior over y (and assume $\pi=0.5$, which you don't have to but original paper does):

$$
\log p\left(y_{1: N} \mid x\right)=\sum_{n}\left[y_{n}=1\right] \log r\left(x_{n}\right)+\left[y_{n}=0\right] \log 1-r\left(x_{n}\right)
$$

where $r(x):=\frac{p_{\text {data }}(x)}{p_{\text {data }}(x)+p_{\text {model }}(x)}$.

- But, we do not know these densities, do we? Whatever, let's try to "learn" $r(x)$ from data. Let's replace it with a parametric binary classifier $D_{\xi}(x)$, and call $\log p(y \mid x), \mathcal{L}(\xi, \theta)$:

$$
\mathcal{L}(\xi, \theta)=\sum_{n}\left[y_{n}=1\right] \log D_{\xi}\left(x_{n}\right)+\left[y_{n}=0\right] \log 1-D_{\xi}\left(x_{n}\right)
$$

- Also get rid of the model/data indicators $y_{1: N}$ using our implicit generative model:

$$
\mathcal{L}(\xi, \theta)=\sum_{n:\left[y_{n}=1\right]} \log D_{\xi}\left(x_{n}\right)+\sum_{n:\left[y_{n}=0\right]} \log 1-D_{\xi}\left(f_{\theta}\left(h_{n}\right)\right),
$$

- Now, maximize with respect to ξ to approximate $r(x)$ as best as possible. Minimize with respect θ to maximize $p_{\text {model }} /\left(p_{\text {model }}+p_{\text {data }}\right)$.
- Now, maximize with respect to ξ to approximate $r(x)$ as best as possible. Minimize with respect θ to maximize $p_{\text {model }} /\left(p_{\text {model }}+p_{\text {data }}\right)$.

$$
\min _{\theta} \max _{\xi} \mathcal{L}(\xi, \theta)=\min _{\theta} \max _{\xi} \sum_{n} \log D_{\xi}\left(x_{n}\right)+\sum_{n} \log 1-D_{\xi}\left(f_{\theta}\left(h_{n}\right)\right)
$$

- Here's your glorified Generative Adversarial Network! In practice you do: (actually don't) 5 iterations of:

$$
\max _{\xi} \sum_{n} \log D_{\xi}\left(x_{n}\right)+\sum_{n} \log 1-D_{\xi}\left(f_{\theta}\left(h_{n}\right)\right)
$$

Then, flip the signs and do:

$$
\max _{\theta} \sum_{n} \log D_{\xi}\left(f_{\theta}\left(h_{n}\right)\right)
$$

A "By the way" slide:

- The 'best' strategy:

$$
\begin{aligned}
& \int \log D(x) p_{\text {data }}(x) d x+\int \log (1-D(x)) p_{\text {model }}(x) d x \\
\approx & \sum_{n}\left[y_{n}=1\right] \log D_{\xi}\left(x_{n}\right)+\sum_{n}\left[y_{n}=0\right] \log 1-D_{\xi}\left(x_{n}\right),
\end{aligned}
$$

- The 'best' strategy:

$$
\begin{aligned}
& \int \log D(x) p_{\text {data }}(x) d x+\int \log (1-D(x)) p_{\text {model }}(x) d x \\
\approx & \sum_{n}\left[y_{n}=1\right] \log D_{\xi}\left(x_{n}\right)+\sum_{n}\left[y_{n}=0\right] \log 1-D_{\xi}\left(x_{n}\right),
\end{aligned}
$$

- Therefore the optimal classifier $D(x)$ is:

$$
\begin{aligned}
& \frac{\partial}{\partial D(x)}\left(\int \log D(x) p_{\text {data }}(x) d x+\int \log (1-D(x)) p_{\text {model }}(x) d x\right)=0 \\
& \quad \rightarrow \frac{p_{\text {data }}(x)}{D(x)}-\frac{p_{\text {model }}(x)}{1-D(x)}=0 \\
& \quad \rightarrow D^{*}(x)=\frac{p_{\text {data }}(x)}{p_{\text {data }}(x)+p_{\text {model }}(x)}
\end{aligned}
$$

$f_{\theta}(h)=W_{2} \tanh \left(W_{1} h+b_{1}\right)+b_{2}$ (Same forward mapping as before)

$f_{\theta}(h)=W_{2} \tanh \left(W_{1} h+b_{1}\right)+b_{2}$ (Same forward mapping as before)

$f_{\theta}(h)=W_{2} \tanh \left(W_{1} h+b_{1}\right)+b_{2}$ (Same forward mapping as before)

$$
f_{\theta}(h)=W_{2} \tanh \left(W_{1} h+b_{1}\right)+b_{2} \text { (Same forward mapping as before) }
$$

$$
\left.f_{\theta}(h)=W_{2} \tanh \left(W_{1} h+b_{1}\right)+b_{2} \text { (Same forward mapping as before }\right)
$$

$$
\left.f_{\theta}(h)=W_{2} \tanh \left(W_{1} h+b_{1}\right)+b_{2} \text { (Same forward mapping as before }\right)
$$

Let's see some GAN action

$f_{\theta}(h)=W_{2} \tanh \left(W_{1} h+b_{1}\right)+b_{2}$ (Same forward mapping as before)

$$
\left.f_{\theta}(h)=W_{2} \tanh \left(W_{1} h+b_{1}\right)+b_{2} \text { (Same forward mapping as before }\right)
$$

Seems to work fine in this toy case.
But what would happen in our good old mixture example?

More GAN action

$$
f_{\theta}(h)=W_{2} \tanh \left(W_{1} h+b_{1}\right)+b_{2} \text { (Same forward mapping as before) }
$$

More GAN action

$$
f_{\theta}(h)=W_{2} \tanh \left(W_{1} h+b_{1}\right)+b_{2} \text { (Same forward mapping as before) }
$$

More GAN action

$$
f_{\theta}(h)=W_{2} \tanh \left(W_{1} h+b_{1}\right)+b_{2} \text { (Same forward mapping as before) }
$$

More GAN action

$$
\left.f_{\theta}(h)=W_{2} \tanh \left(W_{1} h+b_{1}\right)+b_{2} \text { (Same forward mapping as before }\right)
$$

More GAN action

$$
f_{\theta}(h)=W_{2} \tanh \left(W_{1} h+b_{1}\right)+b_{2} \text { (Same forward mapping as before) }
$$

More GAN action

$f_{\theta}(h)=W_{2} \tanh \left(W_{1} h+b_{1}\right)+b_{2}$ (Same forward mapping as before)

More GAN action

$$
f_{\theta}(h)=W_{2} \tanh \left(W_{1} h+b_{1}\right)+b_{2} \text { (Same forward mapping as before) }
$$

Sometimes we see this "smearing" behavior.

More GAN action

$$
\left.f_{\theta}(h)=W_{2} \tanh \left(W_{1} h+b_{1}\right)+b_{2} \text { (Same forward mapping as before }\right)
$$

More GAN action

$$
\left.f_{\theta}(h)=W_{2} \tanh \left(W_{1} h+b_{1}\right)+b_{2} \text { (Same forward mapping as before }\right)
$$

More GAN action

$$
f_{\theta}(h)=W_{2} \tanh \left(W_{1} h+b_{1}\right)+b_{2} \text { (Same forward mapping as before) }
$$

More GAN action

$f_{\theta}(h)=W_{2} \tanh \left(W_{1} h+b_{1}\right)+b_{2}$ (Same forward mapping as before)

More GAN action

$$
\left.f_{\theta}(h)=W_{2} \tanh \left(W_{1} h+b_{1}\right)+b_{2} \text { (Same forward mapping as before }\right)
$$

Sometimes generator "collapses onto" a subset of the modes.

- Mode collapse is a big issue.
- Wasserstein-Gans (which approximately minimizes Wasserstein-1 distance between $p_{\text {model }}(x)$, and $p_{\text {data }}(x)$. This results in smoother gradients.
- Bayesian GANs [Saatci, 2017], integrates out θ and ξ. Claim is that the additional work pays off very well.

Conclusions:

- We looked at the implicit generative models.
- GANs are a special case of implicit generative model learning.
- Things I couldn't discuss: Wasserstein GANs, f-GANs.

