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Generative Models

hn

xn

n = 1 . . .N

h ∼ p(h|θ)

x |h ∼ p(x |h, θ) = pout(x ; fθ(h))

I Maximum Likelihood learning:

max
θ

Ex [log p(x |θ)]

≈max
θ

∑
n

log p(xn|θ)

= max
θ

∑
n

log
∑
hn

p(xn, hn|θ) = max
θ

∑
n

log
∑
hn

p(xn; fθ(hn))

I Major problem with this:
I What is p(x |h, θ)? (Gaussian, Poisson, Smaragdisian?, Me-ian?)
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Implicit Generative Model

hn

xn

n = 1 . . .N

h ∼ p(h|θ)

x |h ∼ δ(x − fθ(h))

I But what to do with this? What is this?

I δ(x − t) =

{
∞ x = t

0 else
.

I x = fθ(h).

I The usual gig is to marginalize h and maximize the likelihood. (Or
equivalently, minimize KL(pdata‖pmodel)).

I Okay, what is pmodel in this case then?
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Here’s your answer my friend

[Devroye, Non-Uniform Random Variate Generation, 1986]
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Implicit Generative Model - Toy Example

hn

xn

n = 1 . . .N

h ∼ N (0, σ2)

x = exp(h)

I fθ(h) = exp(h).

I What is p(x)? - I don’t know directly, but I know that:

Pr(X ≤ x) = Pr(fθ(h) ≤ x) =Pr(h ≤ f −1
θ (x))

Pr(exp(h) ≤ x) =Pr(h ≤ log x), (for x ≥ 0)

I I also know that:

p(x) =
∂

∂x
Pr(h ≤ log x) =

∂

∂x

∫ log x

−∞
p(h)dh
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Toy Example - Continued

p(x) =
∂

∂x
Pr(h ≤ log x) =

∂

∂x

∫ log x

−∞
p(h)dh, for x ≥ 0

=
1

x
N (log x ; 0, σ2)

=
1√

2πσx
exp

(
− log2 x

2σ2

)
=LN (0, σ2)

→Log-Normal!

−4 −2 0 2 4

0.0

0.1

0.2

0.3

0.4

0.5

0.6
normal (h)
lognormal, (e^h)
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Implicit Generative Model - Toy Example 2

hn

xn

n = 1 . . .N

h ∼ N (0, σ2)

x = h2

I fθ(h) = h2.

I What is p(x)? - I don’t know directly, but I know that:

Pr(X ≤ x) =Pr(h ≤ f −1
θ (x))

I Hm. fθ(h) is not invertible?

I But: Pr(h2 ≤ x) = Pr(|h| ≤
√
x) = Pr(h ≤

√
x)− Pr(h ≤ −

√
x), for

x ≥ 0.
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Implicit Generative Model - Toy Example 2

p(x) =
∂

∂x
Pr(X ≤ log x) =

∂

∂x

(∫ √x

−∞
p(h)dh −

∫ −√x

−∞
p(h)dh

)
, x ≥ 0

=
1

2
√
x

(
N (
√
x ; 0, σ2) +N (−

√
x ; 0, σ2)

)
=

1√
2πxσ

(
exp(−x/2σ2)

)
→Chi-squared distribution.

−4 −2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0
normal (h)
lognormal, (e^h)
chi-squared, (h^2)

12 / 32



Implicit Generative Model - Toy Example 2

p(x) =
∂

∂x
Pr(X ≤ log x) =

∂

∂x

(∫ √x

−∞
p(h)dh −

∫ −√x

−∞
p(h)dh

)
, x ≥ 0

=
1

2
√
x

(
N (
√
x ; 0, σ2) +N (−

√
x ; 0, σ2)

)
=

1√
2πxσ

(
exp(−x/2σ2)

)
→Chi-squared distribution.

−4 −2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0
normal (h)
lognormal, (e^h)
chi-squared, (h^2)

12 / 32



Implicit Generative Model - Real Case

hn

xn

n = 1 . . .N

h ∼ N (0, σ2)

x = fθ(h)

I fθ(h) is an arbitrary function now. Let’s consider a one dimensional neural
net, such that fθ(h) = σ(θh), where σ(.) is some typical neural net
non-linearity.

I Can we analytically derive p(x) now? Maybe. But let’s consider what we
need to do in the general case.

I p(x) = ∂
∂x

∫
fθ(h)≤x

p(h)dh. → for all x ∈ R, we need to find the set

{h : f (h) ≤ x , h ∈ R}. In 1-D, we can hope to do something numerically.
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Visualizing output densities

fθ = tanh(1.4h + 0.2)
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Nonlinearity: tangent

(Jaggedness is due to numerical issues)
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Visualizing output densities

fθ = tanh(1.4 tanh(1.4 tanh(1.4h + 0.2) + 0, 2) + 0.2)
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Nonlinearity: tangent_deep
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Visualizing output densities

fθ = log(exp(h + 0.2) + 1)
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Multidimensional Case

I In the multidimensional case, we need to compute the set
S(x) := {h : fθ(h) ≤ x , h ∈ RK , x ∈ RL}. To compute the
multi-dimensional pdf:

p(x) =
∂

∂x

∫
h∈S(x)

p(h)dh

I We cannot explicitly compute this set in practice.

I But we still need an handle on pmodel(.) to train our forward mapping fθ(.).

I Good news: It is very easy to sample from implicit generative models!
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Training the forward model by moment-matching:

I We can match the expected output moment with data moments:

min
θ
‖Ep(h)[s(fθ(h))]− Epdata(xdata)[s(xdata)]‖22,

≈min
θ

∥∥∥∥∥ 1

N

N∑
n=1

s(fθ(hn))− 1

N

N∑
n′=1

s(xdata
n′ )

∥∥∥∥∥
2

2

where s(.) is some summary statistics (e.g. covariance).
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Moment Matching in Action

fθ(h) = W2 tanh(W1h + b1) + b2
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Moment Matching in Action

fθ(h) = W2 tanh(W1h + b1) + b2

Seems to work fine in this toy case.
But what would happen with slightly more difficult data?
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Moment Matching in action, case 2
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Moment Matching in action, case 2

Horrible, but expected.
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Moment Matching in action, case 2

Horrible, but expected.
Choice of sufficient statistics is crucial - this is against the point.

Can we do something more agnostic?
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Ratio Estimation

Now let’s consider this mixture model:

yn

xn

n = 1 . . .N

y ∼ BE(π)

x |y ∼ pmodel(x)[y=0]pdata(x)[y=1]

I y = 0, means generated from the model, y = 1 means the item is from
the dataset. Write the joint distribution:

p(x , y) = (πpmodel(x))[y=0] ((1− π)pdata(x))[y=1]

Then what are the class posteriors p(y = 0|x), and p(y = 1|x)?

I Apply Bayes’ rule:

p(y |x) =
(πpmodel(x))[y=0] ((1− π)pdata)[y=1]

πpmodel(x) + (1− π)pdata(x)

24 / 32



Ratio Estimation

Now let’s consider this mixture model:

yn

xn

n = 1 . . .N

y ∼ BE(π)

x |y ∼ pmodel(x)[y=0]pdata(x)[y=1]

I y = 0, means generated from the model, y = 1 means the item is from
the dataset. Write the joint distribution:

p(x , y) = (πpmodel(x))[y=0] ((1− π)pdata(x))[y=1]

Then what are the class posteriors p(y = 0|x), and p(y = 1|x)?

I Apply Bayes’ rule:

p(y |x) =
(πpmodel(x))[y=0] ((1− π)pdata)[y=1]

πpmodel(x) + (1− π)pdata(x)

24 / 32



Ratio Estimation - continued

I Now let’s write down the log likelihood for the posterior over y (and
assume π = 0.5, which you don’t have to but original paper does):

log p(y1:N |x) =
∑
n

[yn = 1] log r(xn) + [yn = 0] log 1− r(xn),

where r(x) := pdata(x)
pdata(x)+pmodel (x)

.

I But, we do not know these densities, do we? Whatever, let’s try to
“learn” r(x) from data. Let’s replace it with a parametric binary classifier
Dξ(x), and call log p(y |x), L(ξ, θ):

L(ξ, θ) =
∑
n

[yn = 1] logDξ(xn) + [yn = 0] log 1− Dξ(xn),

I Also get rid of the model/data indicators y1:N using our implicit generative
model:

L(ξ, θ) =
∑

n:[yn=1]

logDξ(xn) +
∑

n:[yn=0]

log 1− Dξ(fθ(hn)),

I Now, maximize with respect to ξ to approximate r(x) as best as possible.
Minimize with respect θ to maximize pmodel/(pmodel + pdata).
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Ratio Estimation - continued

I Now, maximize with respect to ξ to approximate r(x) as best as possible.
Minimize with respect θ to maximize pmodel/(pmodel + pdata).

min
θ

max
ξ
L(ξ, θ) = min

θ
max
ξ

∑
n

logDξ(xn) +
∑
n

log 1− Dξ(fθ(hn)),

I Here’s your glorified Generative Adversarial Network! In practice you do:
(actually don’t) 5 iterations of:

max
ξ

∑
n

logDξ(xn) +
∑
n

log 1− Dξ(fθ(hn)),

Then, flip the signs and do:

max
θ

∑
n

logDξ(fθ(hn)),
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A “By the way” slide:

I The ’best’ strategy:∫
logD(x)pdata(x)dx +

∫
log(1− D(x))pmodel(x)dx

≈
∑
n

[yn = 1] logDξ(xn) +
∑
n

[yn = 0] log 1− Dξ(xn),

I Therefore the optimal classifier D(x) is:

∂

∂D(x)

(∫
logD(x)pdata(x)dx +

∫
log(1− D(x))pmodel(x)dx

)
= 0

→pdata(x)

D(x)
− pmodel(x)

1− D(x)
= 0

→D∗(x) =
pdata(x)

pdata(x) + pmodel(x)
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A “By the way” slide:
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Let’s see some GAN action

fθ(h) = W2 tanh(W1h + b1) + b2 (Same forward mapping as before)
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Let’s see some GAN action

fθ(h) = W2 tanh(W1h + b1) + b2 (Same forward mapping as before)

Seems to work fine in this toy case.
But what would happen in our good old mixture example?
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More GAN action

fθ(h) = W2 tanh(W1h + b1) + b2 (Same forward mapping as before)
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More GAN action

fθ(h) = W2 tanh(W1h + b1) + b2 (Same forward mapping as before)

Sometimes we see this “smearing” behavior.
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More GAN action

fθ(h) = W2 tanh(W1h + b1) + b2 (Same forward mapping as before)

Sometimes generator “collapses onto” a subset of the modes.
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Little bit on collapsing

I Mode collapse is a big issue.

I Wasserstein-Gans (which approximately minimizes Wasserstein-1 distance
between pmodel(x), and pdata(x). This results in smoother gradients.

I Bayesian GANs [Saatci, 2017], integrates out θ and ξ. Claim is that the
additional work pays off very well.
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Conclusions:

I We looked at the implicit generative models.

I GANs are a special case of implicit generative model learning.

I Things I couldn’t discuss: Wasserstein GANs, f-GANs.
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