Implicit Generative Models

Cem Subakan

University of Illinois at Urbana-Champaign CS598PS Guest Lecture 2

November 17'th, 2017

real

fake

Implicit Generative Models

Training Implicit Generative Models Moment Matching Ratio Estimation Implicit Generative Models

Training Implicit Generative Models Moment Matching Ratio Estimation

Generative Models

$$egin{aligned} h &\sim p(h| heta) \ x|h &\sim p(x|h, heta) = p_{out}(x;f_{ heta}(h)) \end{aligned}$$

Generative Models

$$egin{aligned} h &\sim p(h| heta) \ x|h &\sim p(x|h, heta) = p_{out}(x;f_{ heta}(h)) \end{aligned}$$

Maximum Likelihood learning:

$$\max_{\theta} \mathbb{E}_{x}[\log p(x|\theta)]$$

$$\approx \max_{\theta} \sum_{n} \log p(x_{n}|\theta)$$

$$= \max_{\theta} \sum_{n} \log \sum_{h_{n}} p(x_{n}, h_{n}|\theta) = \max_{\theta} \sum_{n} \log \sum_{h_{n}} p(x_{n}; f_{\theta}(h_{n}))$$

Generative Models

$$egin{aligned} h &\sim p(h| heta) \ x|h &\sim p(x|h, heta) = p_{out}(x;f_{ heta}(h)) \end{aligned}$$

Maximum Likelihood learning:

$$\max_{\theta} \mathbb{E}_{x}[\log p(x|\theta)]$$

$$\approx \max_{\theta} \sum_{n} \log p(x_{n}|\theta)$$

$$= \max_{\theta} \sum_{n} \log \sum_{h_{n}} p(x_{n}, h_{n}|\theta) = \max_{\theta} \sum_{n} \log \sum_{h_{n}} p(x_{n}; f_{\theta}(h_{n}))$$

- Major problem with this:
 - What is $p(x|h,\theta)$? (Gaussian, Poisson, Smaragdisian?, Me-ian?)

Implicit Generative Model

$$egin{aligned} h &\sim p(h| heta) \ x|h &\sim \delta(x-f_ heta(h)) \end{aligned}$$

$$egin{aligned} h &\sim p(h| heta) \ x|h &\sim \delta(x-f_ heta(h)) \end{aligned}$$

$$\bullet \ \delta(x-t) = \begin{cases} \infty & x=t \\ 0 & else \end{cases}.$$

$$egin{aligned} h &\sim p(h| heta) \ x|h &\sim \delta(x-f_ heta(h)) \end{aligned}$$

$$\delta(x-t) = \begin{cases} \infty & x = t \\ 0 & else \end{cases}.$$
$$k = f_{\theta}(h).$$

$$egin{aligned} h &\sim p(h| heta) \ x|h &\sim \delta(x-f_ heta(h)) \end{aligned}$$

$$\flat \ \delta(x-t) = \begin{cases} \infty & x=t \\ 0 & else \end{cases}.$$

- $x = f_{\theta}(h)$.
- The usual gig is to marginalize h and maximize the likelihood. (Or equivalently, minimize KL(p_{data}||p_{model})).

$$egin{aligned} h &\sim p(h| heta) \ x|h &\sim \delta(x-f_ heta(h)) \end{aligned}$$

$$\flat \ \delta(x-t) = \begin{cases} \infty & x = t \\ 0 & else \end{cases}.$$

- $x = f_{\theta}(h)$.
- The usual gig is to marginalize h and maximize the likelihood. (Or equivalently, minimize KL(p_{data}||p_{model})).
- Okay, what is p_{model} in this case then?

[Devroye, Non-Uniform Random Variate Generation, 1986]

Theorem 4.1.

Let X have distribution function F, and let $h: R \to B$ be a strictly increasing function where B is either R or a proper subset of R. Then h(X) is a random variable with distribution function $F(h^{-1}(x))$.

If F has density f and h^{-1} is absolutely continuous, then h(X) has density

 $(h^{-1})'(x) f(h^{-1}(x))$, for almost all x.

$$\begin{pmatrix}
h_n \\
\vdots \\
x_n \\
n = 1 \dots N
\end{pmatrix}$$

$$h \sim \mathcal{N}(0, \sigma^2)$$

 $x = \exp(h)$

•
$$f_{\theta}(h) = \exp(h)$$
.

• $f_{\theta}(h) = \exp(h)$.

▶ What is *p*(*x*)? - I don't know directly, but I know that:

$$\begin{aligned} \Pr(X \le x) &= \Pr(f_{\theta}(h) \le x) = \Pr(h \le f_{\theta}^{-1}(x)) \\ \Pr(\exp(h) \le x) = \Pr(h \le \log x), \text{ (for } x \ge 0) \end{aligned}$$

• $f_{\theta}(h) = \exp(h)$.

What is p(x)? - I don't know directly, but I know that:

$$\begin{aligned} \Pr(X \le x) &= \Pr(f_{\theta}(h) \le x) = \Pr(h \le f_{\theta}^{-1}(x)) \\ \Pr(\exp(h) \le x) = \Pr(h \le \log x), \text{ (for } x \ge 0) \end{aligned}$$

I also know that:

$$p(x) = \frac{\partial}{\partial x} \Pr(h \le \log x) = \frac{\partial}{\partial x} \int_{-\infty}^{\log x} p(h) dh$$

Toy Example - Continued

$$p(x) = \frac{\partial}{\partial x} \Pr(h \le \log x) = \frac{\partial}{\partial x} \int_{-\infty}^{\log x} p(h) dh, \text{ for } x \ge 0$$
$$= \frac{1}{x} \mathcal{N}(\log x; 0, \sigma^2)$$
$$= \frac{1}{\sqrt{2\pi}\sigma x} \exp\left(\frac{-\log^2 x}{2\sigma^2}\right)$$
$$= \mathcal{L}\mathcal{N}(0, \sigma^2)$$
$$\to \text{Log-Normal!}$$

Toy Example - Continued

$$p(x) = \frac{\partial}{\partial x} \Pr(h \le \log x) = \frac{\partial}{\partial x} \int_{-\infty}^{\log x} p(h) dh, \text{ for } x \ge 0$$
$$= \frac{1}{x} \mathcal{N}(\log x; 0, \sigma^2)$$
$$= \frac{1}{\sqrt{2\pi}\sigma x} \exp\left(\frac{-\log^2 x}{2\sigma^2}\right)$$
$$= \mathcal{LN}(0, \sigma^2)$$

$$\begin{pmatrix} h_n \\ x_n \\ n = 1 \dots N \end{pmatrix}$$

 $\overline{}$

$$h \sim \mathcal{N}(0, \sigma^2)$$

 $x = h^2$

•
$$f_{\theta}(h) = h^2$$
.

•
$$f_{\theta}(h) = h^2$$
.

▶ What is *p*(*x*)? - I don't know directly, but I know that:

$$\Pr(X \leq x) = \Pr(h \leq f_{\theta}^{-1}(x))$$

•
$$f_{\theta}(h) = h^2$$
.

▶ What is *p*(*x*)? - I don't know directly, but I know that:

$$\Pr(X \leq x) = \Pr(h \leq f_{\theta}^{-1}(x))$$

• Hm. $f_{\theta}(h)$ is not invertible?

•
$$f_{\theta}(h) = h^2$$
.

▶ What is *p*(*x*)? - I don't know directly, but I know that:

$$\Pr(X \leq x) = \Pr(h \leq f_{\theta}^{-1}(x))$$

- Hm. $f_{\theta}(h)$ is not invertible?
- ▶ But: $\Pr(h^2 \le x) = \Pr(|h| \le \sqrt{x}) = \Pr(h \le \sqrt{x}) \Pr(h \le -\sqrt{x})$, for $x \ge 0$.

$$p(x) = \frac{\partial}{\partial x} \Pr(X \le \log x) = \frac{\partial}{\partial x} \left(\int_{-\infty}^{\sqrt{x}} p(h) dh - \int_{-\infty}^{-\sqrt{x}} p(h) dh \right), \ x \ge 0$$
$$= \frac{1}{2\sqrt{x}} \left(\mathcal{N}(\sqrt{x}; 0, \sigma^2) + \mathcal{N}(-\sqrt{x}; 0, \sigma^2) \right)$$
$$= \frac{1}{\sqrt{2\pi x} \sigma} \left(\exp(-x/2\sigma^2) \right)$$
$$\to \text{Chi-squared distribution.}$$

$$p(x) = \frac{\partial}{\partial x} \Pr(X \le \log x) = \frac{\partial}{\partial x} \left(\int_{-\infty}^{\sqrt{x}} p(h) dh - \int_{-\infty}^{-\sqrt{x}} p(h) dh \right), \ x \ge 0$$
$$= \frac{1}{2\sqrt{x}} \left(\mathcal{N}(\sqrt{x}; 0, \sigma^2) + \mathcal{N}(-\sqrt{x}; 0, \sigma^2) \right)$$
$$= \frac{1}{\sqrt{2\pi x \sigma}} \left(\exp(-x/2\sigma^2) \right)$$
$$\to \text{Chi-squared distribution.}$$

• $f_{\theta}(h)$ is an arbitrary function now. Let's consider a one dimensional neural net, such that $f_{\theta}(h) = \sigma(\theta h)$, where $\sigma(.)$ is some typical neural net non-linearity.

- $f_{\theta}(h)$ is an arbitrary function now. Let's consider a one dimensional neural net, such that $f_{\theta}(h) = \sigma(\theta h)$, where $\sigma(.)$ is some typical neural net non-linearity.
- Can we analytically derive p(x) now? Maybe. But let's consider what we need to do in the general case.

- *f*_θ(*h*) is an arbitrary function now. Let's consider a one dimensional neural net, such that *f*_θ(*h*) = σ(θ*h*), where σ(.) is some typical neural net non-linearity.
- Can we analytically derive p(x) now? Maybe. But let's consider what we need to do in the general case.
- ▶ $p(x) = \frac{\partial}{\partial x} \int_{f_{\theta}(h) \le x} p(h) dh$. \rightarrow for all $x \in \mathbb{R}$, we need to find the set $\{h : f(h) \le x, h \in \mathbb{R}\}$. In 1-D, we can hope to do something numerically.

Visualizing output densities

(Jaggedness is due to numerical issues)

Visualizing output densities

Visualizing output densities

In the multidimensional case, we need to compute the set S(x) := {h : f_θ(h) ≤ x, h ∈ ℝ^K, x ∈ ℝ^L}. To compute the multi-dimensional pdf:

$$p(x) = \frac{\partial}{\partial x} \int_{h \in S(x)} p(h) dh$$

In the multidimensional case, we need to compute the set S(x) := {h : f_θ(h) ≤ x, h ∈ ℝ^K, x ∈ ℝ^L}. To compute the multi-dimensional pdf:

$$p(x) = \frac{\partial}{\partial x} \int_{h \in S(x)} p(h) dh$$

We cannot explicitly compute this set in practice.

In the multidimensional case, we need to compute the set S(x) := {h : f_θ(h) ≤ x, h ∈ ℝ^K, x ∈ ℝ^L}. To compute the multi-dimensional pdf:

$$p(x) = \frac{\partial}{\partial x} \int_{h \in S(x)} p(h) dh$$

- We cannot explicitly compute this set in practice.
- But we still need an handle on $p_{model}(.)$ to train our forward mapping $f_{\theta}(.)$.
In the multidimensional case, we need to compute the set S(x) := {h : f_θ(h) ≤ x, h ∈ ℝ^K, x ∈ ℝ^L}. To compute the multi-dimensional pdf:

$$p(x) = \frac{\partial}{\partial x} \int_{h \in S(x)} p(h) dh$$

- We cannot explicitly compute this set in practice.
- But we still need an handle on $p_{model}(.)$ to train our forward mapping $f_{\theta}(.)$.
- Good news: It is very easy to sample from implicit generative models!

Implicit Generative Models

Training Implicit Generative Models Moment Matching Ratio Estimation Implicit Generative Models

Training Implicit Generative Models Moment Matching Ratio Estimation

▶ We can match the expected output moment with data moments:

$$\begin{split} \min_{\theta} \|\mathbb{E}_{p(h)}[s(f_{\theta}(h))] - \mathbb{E}_{p_{\text{data}}(x_{\text{data}})}[s(x_{\text{data}})]\|_{2}^{2}, \\ \approx \min_{\theta} \left\| \frac{1}{N} \sum_{n=1}^{N} s(f_{\theta}(h_{n})) - \frac{1}{N} \sum_{n'=1}^{N} s(x_{n'}^{\text{data}}) \right\|_{2}^{2} \end{split}$$

where s(.) is some summary statistics (e.g. covariance).

 $f_\theta(h) = W_2 \tanh(W_1 h + b_1) + b_2$

Seems to work fine in this toy case. But what would happen with slightly more difficult data?

Horrible, but expected.

Horrible, but expected. Choice of sufficient statistics is crucial - this is against the point. Can we do something more agnostic?

Implicit Generative Models

Training Implicit Generative Models Moment Matching Ratio Estimation

Ratio Estimation

Now let's consider this mixture model:

$$\begin{array}{c} \overbrace{x_n} \\ y \\ x_n \\ n = 1 \dots N \end{array} y \sim \mathcal{BE}(\pi) \\ x | y \\ \sim p_{model}(x)^{[y=0]} p_{data}(x)^{[y=1]} \end{array}$$

▶ y = 0, means generated from the model, y = 1 means the item is from the dataset. Write the joint distribution:

$$p(x, y) = (\pi p_{model}(x))^{[y=0]} ((1 - \pi) p_{data}(x))^{[y=1]}$$

Then what are the class posteriors p(y = 0|x), and p(y = 1|x)?

Ratio Estimation

Now let's consider this mixture model:

$$\begin{array}{c} y_{n} \\ y_{n} \\ x_{n} \\ n = 1 \dots N \end{array} y \sim \mathcal{BE}(\pi) \\ x|y \sim p_{model}(x)^{[y=0]} p_{data}(x)^{[y=1]} \end{array}$$

▶ y = 0, means generated from the model, y = 1 means the item is from the dataset. Write the joint distribution:

$$p(x, y) = (\pi p_{model}(x))^{[y=0]} ((1 - \pi) p_{data}(x))^{[y=1]}$$

Then what are the class posteriors p(y = 0|x), and p(y = 1|x)? • Apply Bayes' rule:

$$p(y|x) = \frac{(\pi p_{model}(x))^{[y=0]} ((1-\pi) p_{data})^{[y=1]}}{\pi p_{model}(x) + (1-\pi) p_{data}(x)}$$

Now let's write down the log likelihood for the posterior over y (and assume π = 0.5, which you don't have to but original paper does):

$$\log p(y_{1:N}|x) = \sum_{n} [y_n = 1] \log r(x_n) + [y_n = 0] \log 1 - r(x_n),$$

where $r(x) := \frac{p_{data}(x)}{p_{data}(x) + p_{model}(x)}$.

Now let's write down the log likelihood for the posterior over y (and assume π = 0.5, which you don't have to but original paper does):

$$\log p(y_{1:N}|x) = \sum_{n} [y_n = 1] \log r(x_n) + [y_n = 0] \log 1 - r(x_n),$$

where $r(x) := \frac{p_{data}(x)}{p_{data}(x) + p_{model}(x)}$.

But, we do not know these densities, do we? Whatever, let's try to "learn" r(x) from data. Let's replace it with a parametric binary classifier D_ξ(x), and call log p(y|x), L(ξ, θ):

$$\mathcal{L}(\xi, \theta) = \sum_{n} [y_n = 1] \log D_{\xi}(x_n) + [y_n = 0] \log 1 - D_{\xi}(x_n)$$

Now let's write down the log likelihood for the posterior over y (and assume π = 0.5, which you don't have to but original paper does):

$$\log p(y_{1:N}|x) = \sum_{n} [y_n = 1] \log r(x_n) + [y_n = 0] \log 1 - r(x_n).$$

where $r(x) := \frac{p_{data}(x)}{p_{data}(x) + p_{model}(x)}$.

But, we do not know these densities, do we? Whatever, let's try to "learn" r(x) from data. Let's replace it with a parametric binary classifier D_ξ(x), and call log p(y|x), L(ξ, θ):

$$\mathcal{L}(\xi, \theta) = \sum_{n} [y_n = 1] \log D_{\xi}(x_n) + [y_n = 0] \log 1 - D_{\xi}(x_n),$$

Also get rid of the model/data indicators y_{1:N} using our implicit generative model:

$$\mathcal{L}(\xi, \theta) = \sum_{n:[y_n=1]} \log D_{\xi}(x_n) + \sum_{n:[y_n=0]} \log 1 - D_{\xi}(f_{\theta}(h_n)),$$

Now, maximize with respect to ξ to approximate r(x) as best as possible. Minimize with respect θ to maximize p_{model}/(p_{model} + p_{data}).

Now, maximize with respect to ξ to approximate r(x) as best as possible. Minimize with respect θ to maximize p_{model}/(p_{model} + p_{data}).

$$\min_{ heta} \max_{\xi} \mathcal{L}(\xi, heta) = \min_{ heta} \max_{\xi} \sum_{n} \log D_{\xi}(x_n) + \sum_{n} \log 1 - D_{\xi}(f_{\theta}(h_n)),$$

 Here's your glorified Generative Adversarial Network! In practice you do: (actually don't) 5 iterations of:

$$\max_{\xi} \sum_{n} \log D_{\xi}(x_n) + \sum_{n} \log 1 - D_{\xi}(f_{\theta}(h_n)),$$

Then, flip the signs and do:

$$\max_{\theta} \sum_{n} \log D_{\xi}(f_{\theta}(h_n)),$$

A "By the way" slide:

► The 'best' strategy:

$$\int \log D(x) p_{data}(x) dx + \int \log(1 - D(x)) p_{model}(x) dx$$
$$\approx \sum_{n} [y_n = 1] \log D_{\xi}(x_n) + \sum_{n} [y_n = 0] \log 1 - D_{\xi}(x_n),$$

A "By the way" slide:

► The 'best' strategy:

$$\int \log D(x) p_{data}(x) dx + \int \log(1 - D(x)) p_{model}(x) dx$$
$$\approx \sum_{n} [y_n = 1] \log D_{\xi}(x_n) + \sum_{n} [y_n = 0] \log 1 - D_{\xi}(x_n),$$

• Therefore the optimal classifier D(x) is:

$$\begin{aligned} \frac{\partial}{\partial D(x)} \left(\int \log D(x) p_{data}(x) dx + \int \log(1 - D(x)) p_{model}(x) dx \right) &= 0 \\ \rightarrow \frac{p_{data}(x)}{D(x)} - \frac{p_{model}(x)}{1 - D(x)} &= 0 \\ \rightarrow D^*(x) &= \frac{p_{data}(x)}{p_{data}(x) + p_{model}(x)} \end{aligned}$$

Seems to work fine in this toy case. But what would happen in our good old mixture example?

Sometimes we see this "smearing" behavior.

Sometimes generator "collapses onto" a subset of the modes.

- Mode collapse is a big issue.
- Wasserstein-Gans (which approximately minimizes Wasserstein-1 distance between p_{model}(x), and p_{data}(x). This results in smoother gradients.
- Bayesian GANs [Saatci, 2017], integrates out θ and ξ . Claim is that the additional work pays off very well.

- We looked at the implicit generative models.
- GANs are a special case of implicit generative model learning.
- Things I couldn't discuss: Wasserstein GANs, f-GANs.