Latent Variable Models CS598PS MLSP

Cem Subakan

University of Illinois at Urbana-Champaign

November 10'th, 2017

Basic definition

- LVMs are multivariate probability distributions. Of the form:

$$
p(x, h \mid \theta)
$$

- x : observations (data)
- h : latent (hidden) variables
- θ : parameters
- Examples:

HMM, Linear Dynamical System
Mixture Model, PCA, ICA

- Goal of this lecture: To give a general sense on Bayesian Machine Learning.
- It is a nice framework to understand how models are related to each other.
- I will mostly look things at modeling. (Not too much details on optimization/inference techniques, theoretical analysis)

Examples

- Mixture of HMMs

- Switching HMMs

- Factorial HMM

- HMM with Mixture observations

More Examples

- Convolutive Neural Nets

$$
\widehat{x}_{t}=\sigma\left(\sum_{t^{\prime}=1}^{T^{\prime}} w_{t^{\prime}} x_{t-t^{\prime}}\right)
$$

- Recurrent Nets

$\widehat{h}_{t}=r\left(h_{t-1}, x_{t-1}\right), \widehat{x}_{t}=f\left(h_{t-1}\right)$.

All Models are Wrong

Outline

Main Questions in LVMs Mixture Model Example

Exploring some models

Monte Carlo Epilogue

Plan

Main Questions in LVMs Mixture Model Example

Exploring some models

Monte Carlo Epilogue

Main Questions in LVMs

- Learning/Parameter Estimation:

$$
\max _{\theta} p(x, h \mid \theta)
$$

This usually is a non-convex problem.

- This is okay (but not okay).

Main Questions in LVMs

- Learning/Parameter Estimation:

$$
\max _{\theta} p(x, h \mid \theta)
$$

This usually is a non-convex problem.

- This is okay (but not okay).
- Inference:

$$
p(h \mid x, \theta)=\frac{p(x \mid h, \theta) p(h \mid \theta)}{\int p(x \mid h, \theta) p(h \mid \theta) d h}
$$

The integral in denominator is not always tractable.

- We don't like this. We use approximations such as Monte-Carlo sampling, or variational techniques.

Mixture Model Example

- Model:

$$
\begin{aligned}
h_{n} & \sim \text { Categorical }(\pi) \\
x_{n} \mid h_{n} & \sim \mathcal{N}\left(x ; \mu_{h}, \sigma^{2} l\right), \text { for } n \in\{1, \ldots N\}
\end{aligned}
$$

- $h_{n} \in\{1, \ldots, K\}$, cluster indicators.
- $x_{n} \in \mathbb{R}^{L}$, observed data items.
- $\theta=\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{K}\right\}$ parameters/cluster centers.

- Find cluster indicators $\widehat{h}_{1: N}$ and parameters $\widehat{\theta}$ such that:

$$
\widehat{h}_{1: N}, \widehat{\theta}=\arg \max _{h_{1: N}, \theta} p\left(x_{1: N} \mid h_{1: N}, \theta\right)
$$

- Find cluster indicators $\widehat{h}_{1: N}$ and parameters $\widehat{\theta}$ such that:

$$
\widehat{h}_{1: N}, \widehat{\theta}=\arg \max _{h_{1: N}, \theta} p\left(x_{1: N} \mid h_{1: N}, \theta\right)
$$

- Write down log-likelihood:

$$
\begin{aligned}
\log p\left(x_{1: N}, h_{1: N} \mid \theta\right) & =\log \prod_{n=1}^{N} p\left(x_{n} \mid h_{n}, \theta\right) p\left(h_{n} \mid \theta\right) \\
& =\log \prod_{n=1}^{N}\left(\prod_{k=1}^{K} \mathcal{N}\left(x_{n} ; \mu_{k}, \sigma^{2} I\right)^{\left[h_{n}=k\right]} \times \prod_{k=1}^{K} \mu_{k}^{\left[h_{n}=k\right]}\right) \\
& =+\sum_{n=1}^{N}\left(\sum_{k=1}^{K}\left[h_{n}=k\right]\left(\frac{-\left\|x_{n}-\mu_{k}\right\|_{2}^{2}}{2 \sigma^{2}}+\log \pi_{k}\right)\right)
\end{aligned}
$$

- Algorithm: Fix θ, update h. Fix h, update θ, repeat until convergence (and fix $\pi_{k}=1 / K$).
- Algorithm: Fix θ, update h. Fix h, update θ, repeat until convergence (and fix $\pi_{k}=1 / K$).
- Update $\mu_{k^{\prime}}$: compute the gradient while $h_{1: N}$ is fixed:

$$
\begin{aligned}
\frac{\partial \log p\left(x_{1: N}, h_{1: N} \mid \theta\right)}{\partial \mu_{k}} & =\frac{\partial \sum_{n=1}^{N}\left(\sum_{k=1}^{K}\left[h_{n}=k\right]\left(\frac{-\left\|x_{n}-\mu_{k}\right\|_{2}^{2}}{2 \sigma^{2}}+\log \pi_{k}\right)\right)}{\partial \mu_{k^{\prime}}} \\
& =\sum_{n=1}^{N}\left[h_{n}=k^{\prime}\right] \frac{\left(x_{n}-\mu_{k^{\prime}}\right)}{\sigma^{2}}=\sum_{n=1}^{N}\left[h_{n}=k^{\prime}\right] \frac{x_{n}}{\sigma^{2}}-\left[h_{n}=k^{\prime}\right] \frac{\mu_{k^{\prime}}}{\sigma^{2}}
\end{aligned}
$$

set the gradient equal to 0 , solve for $\mu_{k^{\prime}} \rightarrow \widehat{\mu}_{k^{\prime}}=\frac{\sum_{n=1}^{N}\left[h_{n}=k^{\prime}\right] x_{n}}{\sum_{n=1}^{N}\left[h_{n}=k^{\prime}\right]}$.

- Algorithm: Fix θ, update h. Fix h, update θ, repeat until convergence (and fix $\pi_{k}=1 / K$).
- Update $\mu_{k^{\prime}}$: compute the gradient while $h_{1: N}$ is fixed:

$$
\begin{aligned}
\frac{\partial \log p\left(x_{1: N}, h_{1: N} \mid \theta\right)}{\partial \mu_{k}} & =\frac{\partial \sum_{n=1}^{N}\left(\sum_{k=1}^{K}\left[h_{n}=k\right]\left(\frac{-\left\|x_{n}-\mu_{k}\right\|_{2}^{2}}{2 \sigma^{2}}+\log \pi_{k}\right)\right)}{\partial \mu_{k^{\prime}}} \\
& =\sum_{n=1}^{N}\left[h_{n}=k^{\prime}\right] \frac{\left(x_{n}-\mu_{k^{\prime}}\right)}{\sigma^{2}}=\sum_{n=1}^{N}\left[h_{n}=k^{\prime}\right] \frac{x_{n}}{\sigma^{2}}-\left[h_{n}=k^{\prime}\right] \frac{\mu_{k^{\prime}}}{\sigma^{2}}
\end{aligned}
$$

set the gradient equal to 0 , solve for $\mu_{k^{\prime}} \rightarrow \widehat{\mu}_{k^{\prime}}=\frac{\sum_{n=1}^{N}\left[h_{n}=k^{\prime}\right] x_{n}}{\sum_{n=1}^{N}\left[h_{n}=k^{\prime}\right]}$.

- Update $h_{1: N}$ while $\mu_{k^{\prime}}$ is fixed:

$$
\widehat{h}_{n}=\arg \max _{h_{n}} \log p\left(x_{n}, h_{n} \mid \theta\right)=\arg \min _{k}\left\|x_{n}-\mu_{k}\right\|_{2}^{2}
$$

we therefore assign h_{n} as the index of the mean closest to x_{n}.

- Algorithm: Fix θ, update h. Fix h, update θ, repeat until convergence (and fix $\pi_{k}=1 / K$).
- Update $\mu_{k^{\prime}}$: compute the gradient while $h_{1: N}$ is fixed:

$$
\begin{aligned}
\frac{\partial \log p\left(x_{1: N}, h_{1: N} \mid \theta\right)}{\partial \mu_{k}} & =\frac{\partial \sum_{n=1}^{N}\left(\sum_{k=1}^{K}\left[h_{n}=k\right]\left(\frac{-\left\|x_{n}-\mu_{k}\right\|_{2}^{2}}{2 \sigma^{2}}+\log \pi_{k}\right)\right)}{\partial \mu_{k^{\prime}}} \\
& =\sum_{n=1}^{N}\left[h_{n}=k^{\prime}\right] \frac{\left(x_{n}-\mu_{k^{\prime}}\right)}{\sigma^{2}}=\sum_{n=1}^{N}\left[h_{n}=k^{\prime}\right] \frac{x_{n}}{\sigma^{2}}-\left[h_{n}=k^{\prime}\right] \frac{\mu_{k^{\prime}}}{\sigma^{2}}
\end{aligned}
$$

set the gradient equal to 0 , solve for $\mu_{k^{\prime}} \rightarrow \widehat{\mu}_{k^{\prime}}=\frac{\sum_{n=1}^{N}\left[h_{n}=k^{\prime}\right] x_{n}}{\sum_{n=1}^{N}\left[h_{n}=k^{\prime}\right]}$.

- Update $h_{1: N}$ while $\mu_{k^{\prime}}$ is fixed:

$$
\widehat{h}_{n}=\arg \max _{h_{n}} \log p\left(x_{n}, h_{n} \mid \theta\right)=\arg \min _{k}\left\|x_{n}-\mu_{k}\right\|_{2}^{2}
$$

we therefore assign h_{n} as the index of the mean closest to x_{n}.

- Looks like a famiiar algorithm?
- Find cluster indicator parameters $\widehat{\theta}$ while integrating out hidden variables, such that:

$$
\begin{aligned}
\widehat{\theta} & =\arg \max _{\theta} p\left(x_{1: N} \mid \theta\right) \\
& =\arg \max _{\theta} \sum_{h_{1: N}} p\left(x_{1: N}, h_{1: N} \mid \theta\right)
\end{aligned}
$$

- Find cluster indicator parameters $\widehat{\theta}$ while integrating out hidden variables, such that:

$$
\begin{aligned}
\widehat{\theta} & =\arg \max _{\theta} p\left(x_{1: N} \mid \theta\right) \\
& =\arg \max _{\theta} \sum_{h_{1: N}} p\left(x_{1: N}, h_{1: N} \mid \theta\right)
\end{aligned}
$$

- Write down log-likelihood:

$$
\begin{aligned}
\log p\left(x_{1: N} \mid \theta\right) & =\log \sum_{h_{1: N}} \frac{p\left(x_{1: N}, h_{1: N} \mid \theta\right)}{q\left(h_{1: N}\right)} q\left(h_{1: N}\right)=\log \mathbb{E}_{q}\left[\frac{p\left(x_{1: N}, h_{1: N} \mid \theta\right)}{q\left(h_{1: N}\right)}\right] \\
& \geq V L B:=\mathbb{E}_{q}\left[\log \frac{p\left(x_{1: N}, h_{1: N} \mid \theta\right)}{q\left(h_{1: N}\right)}\right]=^{+} \mathbb{E}_{q}\left[\log p\left(x_{1: N}, h_{1: N} \mid \theta\right)\right] \\
& =\sum_{n=1}^{N}\left(\sum_{k=1}^{K} \mathbb{E}_{q}\left[h_{n}=k\right]\left(\frac{-\left\|x_{n}-\mu_{k}\right\|_{2}^{2}}{2 \sigma^{2}}+\log \pi_{k}\right)\right)
\end{aligned}
$$

- Algorithm: Fix θ, update q. Fix q, update θ, repeat until convergence (and fix $\pi_{k}=1 / K$).
- Algorithm: Fix θ, update q. Fix q, update θ, repeat until convergence (and fix $\pi_{k}=1 / K$).
- Update $\mu_{k^{\prime}}$: compute the gradient while $h_{1: N}$ is fixed:

$$
\begin{aligned}
\frac{\partial V L B}{\partial \mu_{k^{\prime}}} & =\frac{\partial \sum_{n=1}^{N}\left(\sum_{k=1}^{K} \mathbb{E}\left[h_{n}=k\right]\left(\frac{-\left\|x_{n}-\mu_{k}\right\|_{2}^{2}}{2 \sigma^{2}}+\log \pi_{k}\right)\right)}{\partial \mu_{k^{\prime}}} \\
& =\sum_{n=1}^{N}\left[h_{n}=k^{\prime}\right] \frac{\left(x_{n}-\mu_{k^{\prime}}\right)}{\sigma^{2}}=\sum_{n=1}^{N} \mathbb{E}\left[h_{n}=k^{\prime}\right] \frac{x_{n}}{\sigma^{2}}-\mathbb{E}\left[h_{n}=k^{\prime}\right] \frac{\mu_{k^{\prime}}}{\sigma^{2}}
\end{aligned}
$$

set the gradient equal to 0 , solve for $\mu_{k^{\prime}} \rightarrow \widehat{\mu}_{k^{\prime}}=\frac{\sum_{n=1}^{N} \mathbb{E}\left[h_{n}=k^{\prime}\right] x_{n}}{\sum_{n=1}^{N} \mathbb{E}\left[h_{n}=k^{\prime}\right]}$.

- Algorithm: Fix θ, update q. Fix q, update θ, repeat until convergence (and fix $\pi_{k}=1 / K$).
- Update $\mu_{k^{\prime}}$: compute the gradient while $h_{1: N}$ is fixed:

$$
\begin{aligned}
\frac{\partial V L B}{\partial \mu_{k^{\prime}}} & =\frac{\partial \sum_{n=1}^{N}\left(\sum_{k=1}^{K} \mathbb{E}\left[h_{n}=k\right]\left(\frac{-\left\|x_{n}-\mu_{k}\right\|_{2}^{2}}{2 \sigma^{2}}+\log \pi_{k}\right)\right)}{\partial \mu_{k^{\prime}}} \\
& =\sum_{n=1}^{N}\left[h_{n}=k^{\prime}\right] \frac{\left(x_{n}-\mu_{k^{\prime}}\right)}{\sigma^{2}}=\sum_{n=1}^{N} \mathbb{E}\left[h_{n}=k^{\prime}\right] \frac{x_{n}}{\sigma^{2}}-\mathbb{E}\left[h_{n}=k^{\prime}\right] \frac{\mu_{k^{\prime}}}{\sigma^{2}}
\end{aligned}
$$

set the gradient equal to 0 , solve for $\mu_{k^{\prime}} \rightarrow \widehat{\mu}_{k^{\prime}}=\frac{\sum_{n=1}^{N} \mathbb{E}\left[h_{n}=k^{\prime}\right] x_{n}}{\sum_{n=1}^{N} \mathbb{E}\left[h_{n}=k^{\prime}\right]}$.

- Update $q\left(h_{1: N}\right)$ while $\mu_{k^{\prime}}$ is fixed. Notice that:

$$
V L B=\mathbb{E}_{q}\left[\log \frac{p\left(x_{1: N}, h_{1: N} \mid \theta\right)}{q\left(h_{1: N}\right)}\right]=K L(q(h) \| p(x, h \mid \theta))
$$

What is the variational distribution that would minimize this divergence?

- See board for derivation.
- See board for derivation.

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial q} & =\frac{\partial}{\partial q}\left(\int q(h) \log p(x, h \mid \theta) d h-\int q(h) \log q(h) d h+\lambda\left(\int q(h) d h-1\right)\right) \\
& =\log p(x, h)-\log q(h)-1+\lambda=0 \\
& \rightarrow q(h)=\frac{p(x, h \mid \theta)}{\exp (1-\lambda)} \\
& \rightarrow \exp (1-\lambda)=p(x \mid \theta) \\
& \rightarrow q(h)=\frac{p(x, h \mid \theta)}{p(x \mid \theta)}=p(h \mid x, \theta)
\end{aligned}
$$

- See board for derivation.

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial q} & =\frac{\partial}{\partial q}\left(\int q(h) \log p(x, h \mid \theta) d h-\int q(h) \log q(h) d h+\lambda\left(\int q(h) d h-1\right)\right) \\
& =\log p(x, h)-\log q(h)-1+\lambda=0 \\
& \rightarrow q(h)=\frac{p(x, h \mid \theta)}{\exp (1-\lambda)} \\
& \rightarrow \exp (1-\lambda)=p(x \mid \theta) \\
& \rightarrow q(h)=\frac{p(x, h \mid \theta)}{p(x \mid \theta)}=p(h \mid x, \theta)
\end{aligned}
$$

- Note that in our case $q(h)=q\left(h_{1: N}\right)=\prod_{n} q\left(h_{n}\right)$, where

$$
q\left(h_{n}=k\right)=\frac{p\left(x_{n}, h_{n}=k \mid \theta\right)}{p\left(x_{n} \mid \theta\right)}=\frac{\pi_{k} \mathcal{N}\left(x_{n} ; \mu_{k}, \sigma^{2} I\right)}{\sum_{k^{\prime}} \pi_{k^{\prime}} \mathcal{N}\left(x_{n} ; \mu_{k^{\prime}}, \sigma^{2} I\right)}
$$

Randomly initialize $\mu_{1: K}$.
while Not converged do
E-step:
if ICM then

$$
\widehat{h}_{n}=\arg \max _{h_{n}} \log p\left(x_{n}, h_{n} \mid \theta\right)=\arg \min _{k}\left\|x_{n}-\mu_{k}\right\|_{2}^{2}
$$

else if EM then

$$
\begin{aligned}
& \quad q\left(h_{n}=k\right)=\frac{\pi_{k} \mathcal{N}\left(x_{n} ; \mu_{k}, \sigma^{2} l\right)}{\sum_{k^{\prime}} \pi_{k^{\prime}} \mathcal{N}\left(x_{n} ; \mu_{k^{\prime}}, \sigma^{2} l\right)} \\
& \text { end if }
\end{aligned}
$$

M-step:
if ICM then

$$
\widehat{\mu}_{k^{\prime}}=\frac{\sum_{n=1}^{N}\left[h_{n} k^{\prime}\right] x_{n}}{\sum_{n=1}^{N}\left[h_{n}=k^{\prime}\right]}
$$

else if EM then

$$
\widehat{\mu}_{k^{\prime}}=\frac{\sum_{n=1}^{N} \mathbb{E}_{q}\left[h_{n}=k^{\prime}\right] x_{n}}{\sum_{n=1}^{N} \mathbb{E}_{q}\left[h_{n}=k^{\prime}\right]}
$$

end if
end while

- Model:

$$
\begin{aligned}
\mu_{k} & \sim \mathcal{N}\left(\mu_{k} ; 0, \sigma_{0}^{2} I\right), \text { for } k \in\{1, \ldots, K\} \\
h_{n} & \sim \text { Categorical }(\pi) \\
x_{n} \mid h_{n} & \sim \mathcal{N}\left(x ; \mu_{h}, \sigma^{2} I\right), \text { for } n \in\{1, \ldots, N\}
\end{aligned}
$$

- $h_{n} \in\{1, \ldots, K\}$, cluster indicators.
- $x_{n} \in \mathbb{R}^{L}$, observed data items.
- $\theta=\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{K}\right\}$ parameters/cluster centers. But we are not treating these guys as parameters anymore.
- Approximate the posterior distribution $p(h, \theta \mid x)$, with a variational distribution \widehat{q} such that,

$$
\widehat{q}(h, \theta)=\arg \min _{q} K L(q(h, \theta) \| p(x, h, \theta))
$$

- We will use the mean field approximation. English: $q(h, \theta)=q_{h}(h) q_{\theta}(\theta)$.
- Approximate the posterior distribution $p(h, \theta \mid x)$, with a variational distribution \widehat{q} such that,

$$
\widehat{q}(h, \theta)=\arg \min _{q} K L(q(h, \theta) \| p(x, h, \theta))
$$

- We will use the mean field approximation. English: $q(h, \theta)=q_{h}(h) q_{\theta}(\theta)$.
- Algorithm: Fix q_{h}, update q_{θ}. We can show that: (via same process as the EM case)

$$
\widehat{q}_{\theta}(\theta)=\arg \min _{q_{\theta}} K L\left(q_{h}(h) q_{\theta}(\theta) \| p(x, h, \theta)\right)=\frac{1}{Z} \exp \left(\mathbb{E}_{q_{h}}[\log p(x, h, \theta)]\right)
$$

where Z is the normalization constant. Similarly,

- Approximate the posterior distribution $p(h, \theta \mid x)$, with a variational distribution \widehat{q} such that,

$$
\widehat{q}(h, \theta)=\arg \min _{q} K L(q(h, \theta) \| p(x, h, \theta))
$$

- We will use the mean field approximation. English: $q(h, \theta)=q_{h}(h) q_{\theta}(\theta)$.
- Algorithm: Fix q_{h}, update q_{θ}. We can show that: (via same process as the EM case)

$$
\widehat{q}_{\theta}(\theta)=\arg \min _{q_{\theta}} K L\left(q_{h}(h) q_{\theta}(\theta) \| p(x, h, \theta)\right)=\frac{1}{Z} \exp \left(\mathbb{E}_{q_{h}}[\log p(x, h, \theta)]\right)
$$

where Z is the normalization constant. Similarly,

- Fix q_{θ}, update q_{h} :

$$
\widehat{q}_{h}(h)=\arg \min _{q_{h}} K L\left(q_{h}(h) q_{\theta}(\theta) \| p(x, h, \theta)\right)=\frac{1}{Z} \exp \left(\mathbb{E}_{q_{\theta}}[\log p(x, h, \theta)]\right)
$$

$$
\begin{aligned}
\log \widehat{q}_{\theta}\left(\mu_{k}\right) & ={ }^{+} \mathbb{E}_{q_{n}}\left[\log p\left(x, h, \mu_{k}\right)\right] \\
& ={ }^{+} \sum_{n=1}^{N} \mathbb{E}\left[h_{n}=k\right] \frac{-\left(x_{n}^{\top} x_{n}-2 x_{n}^{\top} \mu_{k}+\mu_{k}^{\top} \mu_{k}\right)}{2 \sigma^{2}}-\frac{\mu_{k}^{\top} \mu_{k}}{2 \sigma_{0}^{2}} \\
& ={ }^{+} \frac{\left.\sum_{n=1}^{N} \mathbb{E}\left[h_{n}=k\right] 2 x_{n}^{\top} \mu_{k}-\left(\sum_{n=1}^{N} \mathbb{E}\left[h_{n}=k\right]+\sigma^{2}\right) \mu_{k}^{\top} \mu_{k}\right)}{2 \sigma^{2} \sigma_{0}^{2}} \\
& ={ }^{+} \log \mathcal{N}\left(\mu_{k} ; \frac{\sum_{n} \mathbb{E}\left[h_{n}=k\right] x_{n}}{\sum_{n} \mathbb{E}\left[h_{n}=k\right]+\sigma^{2}}, \frac{\sigma^{2} \sigma_{0}^{2}}{\sum_{n} \mathbb{E}\left[h_{n}=k\right]+\sigma^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
\log \widehat{q}_{\theta}\left(\mu_{k}\right) & ={ }^{+} \mathbb{E}_{q_{n}}\left[\log p\left(x, h, \mu_{k}\right)\right] \\
& ={ }^{+} \sum_{n=1}^{N} \mathbb{E}\left[h_{n}=k\right] \frac{-\left(x_{n}^{\top} x_{n}-2 x_{n}^{\top} \mu_{k}+\mu_{k}^{\top} \mu_{k}\right)}{2 \sigma^{2}}-\frac{\mu_{k}^{\top} \mu_{k}}{2 \sigma_{0}^{2}} \\
& ={ }^{+} \frac{\left.\sum_{n=1}^{N} \mathbb{E}\left[h_{n}=k\right] 2 x_{n}^{\top} \mu_{k}-\left(\sum_{n=1}^{N} \mathbb{E}\left[h_{n}=k\right]+\sigma^{2}\right) \mu_{k}^{\top} \mu_{k}\right)}{2 \sigma^{2} \sigma_{0}^{2}} \\
& ={ }^{+} \log \mathcal{N}\left(\mu_{k} ; \frac{\sum_{n} \mathbb{E}\left[h_{n}=k\right] x_{n}}{\sum_{n} \mathbb{E}\left[h_{n}=k\right]+\sigma^{2}}, \frac{\sigma^{2} \sigma_{0}^{2}}{\sum_{n} \mathbb{E}\left[h_{n}=k\right]+\sigma^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
\log \widehat{q}_{h}\left(h_{n}=k\right) & =\left(\frac{\mathbb{E}\left[-\left\|x_{n}-\mu_{k}\right\|_{2}^{2}\right]}{2 \sigma^{2}}+\log \pi_{k}\right) \\
\rightarrow \widehat{q}_{h}\left(h_{n}=k\right) & =\frac{\exp \left(\frac{\mathbb{E}\left[-\left\|x_{n}-\mu_{k}\right\|_{2}^{2}\right]}{2 \sigma^{2}}+\log \pi_{k}\right)}{\sum_{k} \exp \left(\frac{\mathbb{E}\left[-\left\|x_{n}-\mu_{k}\right\|_{2}^{2}\right]}{2 \sigma^{2}}+\log \pi_{k}\right)}
\end{aligned}
$$

- Variational lower bound:

$$
\int p(x, h, \theta) d h d \theta \geq \mathbb{E}_{q(h) q(\theta)}[\log p(x, h, \theta)]-\mathbb{E}_{q(h) q(\theta)}[\log q(h)+\log q(\theta)]
$$

- You can use VLB to determine K : (plot taken from Bishop, 2006)

Plot of the variational lower bound \mathcal{L} versus the number K of components in the Gaussian mixture model, for the Old Faithful data, showing a distinct peak at $K=$ 2 components. For each value of K, the model is trained from 100 different random starts, and the results shown as ' + ' symbols plotted with small random horizontal perturbations so that they can be distinguished. Note that some solutions find suboptimal local maxima, but that this happens infrequently.

- Variational lower bound:

$$
\int p(x, h, \theta) d h d \theta \geq \mathbb{E}_{q(h) q(\theta)}[\log p(x, h, \theta)]-\mathbb{E}_{q(h) q(\theta)}[\log q(h)+\log q(\theta)]
$$

- You can use VLB to determine K : (plot taken from Bishop, 2006)

Plot of the variational lower bound \mathcal{L} versus the number K of components in the Gaussian mixture model, for the Old Faithful data, showing a distinct peak at $K=$ 2 components. For each value of K, the model is trained from 100 different random starts, and the results shown as ' + ' symbols plotted with small random horizontal perturbations so that they can be distinguished. Note that some solutions find suboptimal local maxima, but that this happens infrequently.

- But admittedly the algebra gets tiring.

Variant 4 for GMM - Going Ultra Bayesian

- Model:

$$
\begin{aligned}
\pi & \sim \operatorname{Dirichlet}(1 / K, \ldots, 1 / K) \\
\mu_{k} & \sim \mathcal{N}\left(\mu_{k} ; 0, \sigma_{0}^{2} I\right), \text { for } k \in\{1, \ldots, K\} \\
h_{n} & \sim \operatorname{Categorical}(\pi) \\
x_{n} \mid h_{n} & \sim \mathcal{N}\left(x ; \mu_{h}, \sigma^{2} I\right), \text { for } n \in\{1, \ldots, N\}
\end{aligned}
$$

- $h_{n} \in\{1, \ldots, K\}$, cluster indicators.
- $x_{n} \in \mathbb{R}^{L}$, observed data items.
- $\theta=\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{K}\right\} \cup\{\pi\}$
- Integrate out the parameters, sample from the full conditionals:

$$
\begin{aligned}
p\left(h_{n}=k \mid h_{-n}, x_{1: N}\right) & \propto \int p\left(x_{1: N}, h_{1: N}, \pi, \mu_{1: K}\right) d \mu_{1: K} d \pi \\
& \propto \frac{\alpha / K+N_{k}^{-n}}{\alpha+N-1} p\left(x_{n} \mid\left\{x_{m}: m \neq n, h_{m}=k\right\}\right)
\end{aligned}
$$

- And, sample from these full conditionals!
- Integrate out the parameters, sample from the full conditionals:

$$
\begin{aligned}
p\left(h_{n}=k \mid h_{-n}, x_{1: N}\right) & \propto \int p\left(x_{1: N}, h_{1: N}, \pi, \mu_{1: K}\right) d \mu_{1: K} d \pi \\
& \propto \frac{\alpha / K+N_{k}^{-n}}{\alpha+N-1} p\left(x_{n} \mid\left\{x_{m}: m \neq n, h_{m}=k\right\}\right)
\end{aligned}
$$

- Take K to infinity:

$$
\begin{aligned}
p\left(h_{n}=k, k \text { occupied } \mid h_{-n}, x_{1: N}\right) & \propto \frac{N_{k}^{-n}}{\alpha+N-1} p\left(x_{n} \mid\left\{x_{m}: m \neq n, h_{m}=k\right\}\right) \\
p\left(h_{n}=k, k \text { empty } \mid h_{-n}, x_{1: N}\right) & \propto \frac{\alpha}{\alpha+N-1} p\left(x_{n}\right)
\end{aligned}
$$

- And, sample from these full conditionals!

Collapsed Gibbs sampling in Infinite GMM

Top left: Histogram of observed data, Top right: Samples from full conditional of $h_{1: N}$, Bottom: Histogram of K

Collapsed Gibbs sampling in Infinite GMM

Top left: Histogram of observed data, Top right: Samples from full conditional of $h_{1: N}$, Bottom: Histogram of K

Collapsed Gibbs sampling in Infinite GMM

Top left: Histogram of observed data, Top right: Samples from full conditional of $h_{1: N}$, Bottom: Histogram of K

Collapsed Gibbs sampling in Infinite GMM

Top left: Histogram of observed data, Top right: Samples from full conditional of $h_{1: N}$, Bottom: Histogram of K

Collapsed Gibbs sampling in Infinite GMM

Top left: Histogram of observed data, Top right: Samples from full conditional of $h_{1: N}$, Bottom: Histogram of K

Collapsed Gibbs sampling in Infinite GMM

Top left: Histogram of observed data, Top right: Samples from full conditional of $h_{1: N}$, Bottom: Histogram of K

Collapsed Gibbs sampling in Infinite GMM

Top left: Histogram of observed data, Top right: Samples from full conditional of $h_{1: N}$, Bottom: Histogram of K

Collapsed Gibbs sampling in Infinite GMM

Top left: Histogram of observed data, Top right: Samples from full conditional of $h_{1: N}$, Bottom: Histogram of K

Collapsed Gibbs sampling in Infinite GMM

Top left: Histogram of observed data, Top right: Samples from full conditional of $h_{1: N}$, Bottom: Histogram of K

What's the point of going all Bayesian then

- (Automatic) Model Selection for Unsupervised Learning
- (Automatic) Model Selection for Unsupervised Learning
- Model Averaging (Model plays all its cards)
- (Automatic) Model Selection for Unsupervised Learning
- Model Averaging (Model plays all its cards)
- Principled way of regularization
- (Automatic) Model Selection for Unsupervised Learning
- Model Averaging (Model plays all its cards)
- Principled way of regularization
- All of these 4 variants are extendable for other models. We can play with:
- Distribution of h.
- Impose structure on h.
- We can change the conditional distribution $p(x \mid h, \theta)$. (Application decides)
- We can play with how we do inference and learning.
- (Automatic) Model Selection for Unsupervised Learning
- Model Averaging (Model plays all its cards)
- Principled way of regularization
- All of these 4 variants are extendable for other models. We can play with:
- Distribution of h.
- Impose structure on h.
- We can change the conditional distribution $p(x \mid h, \theta)$. (Application decides)
- We can play with how we do inference and learning.
- (Little controversial - but best part of it) You don't need to read paper/take ML classes if you learn these.

Plan

Main Questions in LVMs
 Mixture Model Example

Exploring some models

Monte Carlo Epilogue

Probabilistic PCA

- Model: [Bishop, Tipping 1999]

$$
\begin{aligned}
h_{n} & \sim \mathcal{N}\left(h_{n} ; 0, I\right) \\
x_{n} \mid h_{n} & \sim \mathcal{N}\left(x ; W h_{n}+\mu, \sigma^{2} I\right), \text { for } n \in\{1, \ldots N\}
\end{aligned}
$$

- $h_{n} \in \mathbb{R}^{K}$, latent variables (embeddings).
- $x_{n} \in \mathbb{R}^{L}$, observed data items.
- $\theta=\left\{W, \mu, \sigma^{2}\right\}$

Probabilistic PCA

- Model: [Bishop, Tipping 1999]

$$
\begin{aligned}
h_{n} & \sim \mathcal{N}\left(h_{n} ; 0, I\right) \\
x_{n} \mid h_{n} & \sim \mathcal{N}\left(x ; W h_{n}+\mu, \sigma^{2} I\right), \text { for } n \in\{1, \ldots N\}
\end{aligned}
$$

- $h_{n} \in \mathbb{R}^{K}$, latent variables (embeddings).
- $x_{n} \in \mathbb{R}^{L}$, observed data items.
- $\theta=\left\{W, \mu, \sigma^{2}\right\}$

Note that $p(x)=\int p(x \mid h) p(h) d h=\mathcal{N}\left(\mu, W W^{\top}+\sigma^{2} I\right)$. Then ML estimate $\widehat{W}_{M L}=U_{K}\left(\Lambda_{K}-\sigma^{2} I\right)^{1 / 2} . U_{q}, \Lambda_{K}$ are the first K eigenvectors-eigenvalues of the covariance matrix. Familiar?

- Model: [Bartholomew 1987]

$$
\begin{aligned}
h_{n} & \sim \mathcal{N}\left(h_{n} ; 0, l\right) \\
x_{n} \mid h_{n} & \sim \mathcal{N}\left(x ; W h_{n}+\mu, \Psi\right), \text { for } n \in\{1, \ldots N\}
\end{aligned}
$$

- $h_{n} \in \mathbb{R}^{K}$, latent variables (embeddings).
- $x_{n} \in \mathbb{R}^{L}$, observed data items.
- $\theta=\{W, \mu, \Psi\}$
- Model: [Lee, Seung 1999]

$$
x_{n} \mid h_{n} \sim \mathcal{P O}\left(x_{n} ; W h_{n}\right), \text { for } n \in\{1, \ldots N\}
$$

- $h_{n} \in \mathbb{R}^{\geq 0, K}$, latent variables (embeddings).
- $x_{n} \in \mathbb{R}^{\geq 0, L}$, observed data items.
- $\theta=\{W \geq 0\}$
- Model:

$$
\begin{aligned}
h_{n} & \sim \mathcal{N}\left(h_{n} ; 0, I\right) \\
x_{n} \mid h_{n} & \sim \mathcal{N}\left(x ; \phi\left(t_{n}\right) h_{n}, \sigma^{2} I\right), \text { for } n \in\{1, \ldots N\}
\end{aligned}
$$

- $h_{n} \in \mathbb{R}^{K}$, latent variables (embeddings).
- $\phi\left(t_{n}\right) \in \mathbb{R}^{L_{2} \times K}$, the design matrix
- $t_{n} \in \mathbb{R}^{L_{1}}$, input variable.
- $x_{n} \in \mathbb{R}^{\geq 0, L_{2}}$, observed data items.

- Model:

$$
x_{n} \mid h_{n} \sim \mathcal{N}\left(x_{n} ; f_{\theta}\left(t_{n}\right), \sigma^{2} I\right), \text { for } n \in\{1, \ldots N\}
$$

- $f_{\theta}\left(t_{n}\right): \mathbb{R}^{L_{1}} \rightarrow \mathbb{R}^{L_{2}}$, the neural network! (Convolutive, recurrent, feed-forward what have you)
- $t_{n} \in \mathbb{R}^{L_{1}}$, input variable.
- $x_{n} \in \mathbb{R}^{L_{2}}$, observed data items.
- θ, neural network parameters.

Neural Network Regression

- Model:

$$
x_{n} \mid h_{n} \sim \mathcal{N}\left(x_{n} ; f_{\theta}\left(t_{n}\right), \sigma^{2} I\right), \text { for } n \in\{1, \ldots N\}
$$

- $f_{\theta}\left(t_{n}\right): \mathbb{R}^{L_{1}} \rightarrow \mathbb{R}^{L_{2}}$, the neural network! (Convolutive, recurrent, feed-forward what have you)
- $t_{n} \in \mathbb{R}^{L_{1}}$, input variable.
- $x_{n} \in \mathbb{R}^{L_{2}}$, observed data items.
- θ, neural network parameters.

Notice that this is not a Latent Variable Model. Why?

- Model: [Kingma, Welling 2013]

$$
\begin{aligned}
h_{n} & \sim \mathcal{N}\left(h_{n} ; 0, I\right) \\
x_{n} \mid h_{n} & \sim \mathcal{N}\left(x ; f_{\theta}\left(h_{n}\right), \sigma^{2} I\right), \text { for } n \in\{1, \ldots N\}
\end{aligned}
$$

- $h_{n} \in \mathbb{R}^{K}$, latent variables (embeddings).
- $f_{\theta}\left(h_{n}\right): \mathbb{R}^{K} \rightarrow \mathbb{R}^{L}$, the forward mapping.
- $x_{n} \in \mathbb{R}^{L_{2}}$, observed data items.
- θ, neural network parameters.
- Model:

$$
\begin{aligned}
h_{n} \mid h_{n-1} & \sim \operatorname{Discrete}\left(A\left(:, h_{n-1}\right)\right. \\
x_{n} \mid h_{n} & \sim p\left(x_{n} \mid h_{n}, O\right)
\end{aligned}
$$

- $h_{n} \in\{1, \ldots, K\}$, latent variables (embeddings).
- $x_{n} \in \mathbb{R}^{L}$, observed data items.
- O, the emission matrix, $A \in \mathbb{R}^{K \times K}$, the transition matrix.
- $\theta=\{O, A\}$.
- Learning is conceptually all the same. Just that E-step is little non-trivial.

Tired of IID models? Linear Dynamical System

- Model:

$$
\begin{aligned}
h_{n} \mid h_{n-1} & \sim \mathcal{N}\left(h_{n} ; A h_{n-1}, \Sigma_{1}\right) \\
x_{n} \mid h_{n} & \sim \mathcal{N}\left(x_{n} ; O h_{n}, \Sigma_{2}\right)
\end{aligned}
$$

- $h_{n} \in \mathbb{R}^{K}$, latent variables (embeddings).
- $x_{n} \in \mathbb{R}^{L}$, observed data items.
- $O \in \mathbb{R}^{L \times K}$, the emission matrix, $A \in \mathbb{R}^{K \times K}$, the transition matrix.
- $\theta=\{O, A\}$.
- A chain structure: (HMMs, LDS, etc.)

$$
\begin{aligned}
p\left(h_{t} \mid x_{1: T}\right) & \propto p\left(h_{t}, x_{1: T}\right) \\
& =p\left(h_{t}, x_{1: t}\right) p\left(x_{t+1: T} \mid h_{t}\right) \\
& =\alpha\left(h_{t}\right) \beta\left(h_{t}\right)
\end{aligned}
$$

where,

$$
\begin{gathered}
\alpha\left(h_{t}\right)=p\left(x_{t} \mid h_{t}\right) \sum_{h_{t-1}} p\left(h_{t} \mid h_{t-1}\right) p\left(x_{t-1} \mid h_{t-1}\right) \ldots p\left(x_{2} \mid h_{2}\right) \sum_{h_{1}} p\left(h_{2} \mid h_{1}\right) p\left(x_{1} \mid h_{1}\right) \underbrace{p\left(h_{1}\right)}_{\alpha\left(h_{1}\right)} \\
\beta\left(h_{t}\right)=\sum_{h_{t+1}} p\left(h_{t} \mid h_{t+1}\right) p\left(x_{t+1} \mid h_{t+1}\right) \ldots \underbrace{\underbrace{\sum_{h_{T}} p\left(h_{T} \mid h_{T-1}\right) p\left(x_{T} \mid h_{T}\right) \underbrace{1}_{\beta\left(h_{T}\right)}}_{\beta\left(h_{2}\right)}}_{\alpha\left(h_{t-1}\right)}
\end{gathered}
$$

- $\alpha\left(h_{t}\right)$ are "forward messages". $\beta\left(h_{t}\right)$ are "backward messages". One forward pass and one backward pass is sufficient since,

$$
\begin{aligned}
p\left(h_{t} \mid x_{1: T}\right) & \propto p\left(h_{t}, x_{1: T}\right) \\
& =p\left(h_{t}, x_{1: t}\right) p\left(x_{t+1: T} \mid h_{t}\right) \\
& =\alpha\left(h_{t}\right) \beta\left(h_{t}\right)
\end{aligned}
$$

- Traditionally (EE traditions), $\alpha_{1: T}$ is known as the filtering density. $\gamma_{1: T}:=\alpha_{1: T .} * \beta_{1: T}$ is the smoothing density.

Observation Sequence

Filtering Density

Smoothing Density

Tired of directed graphs? MRFs

- The joint distribution is defined with clique "potentials".

$$
p\left(h_{1: K}, x_{1: J} \mid \theta\right)=\frac{1}{Z(\theta)} \prod_{C \in \mathcal{G}} \exp \left(\theta^{T} \phi\left(x_{C}, h_{C}\right)\right)
$$

- The joint distribution is defined with clique "potentials".

$$
p\left(h_{1: K}, x_{1: J} \mid \theta\right)=\frac{1}{Z(\theta)} \prod_{C \in \mathcal{G}} \exp \left(\theta^{\top} \phi\left(x_{C}, h_{C}\right)\right)
$$

- Example: (An image segmentation model)

The notorious partition function!

How to do inference in general graphs?

- Forward-Backward algorithm is an instance of "Belief Propagation".

Example

$$
p\left(h_{1: 4}\right)=\frac{1}{Z} \psi\left(h_{1}, h_{2}\right) \psi\left(h_{2}, h_{4}\right) \psi\left(h_{2}, h_{3}\right)
$$

$$
\begin{aligned}
p\left(h_{2}\right) & \propto \sum_{h_{1}, h_{3}, h_{4}} \psi\left(h_{1}, h_{2}\right) \psi\left(h_{2}, h_{4}\right) \psi\left(h_{2}, h_{3}\right) \\
& =\underbrace{\left(\sum_{h_{1}} \psi\left(h_{1}, h_{2}\right)\right)}_{\mathbf{m}_{1 \rightarrow 2}} \underbrace{\left(\sum_{h_{4}} \psi\left(h_{2}, h_{4}\right)\right)}_{\mathbf{m}_{4 \rightarrow 2}} \underbrace{\left(\sum_{h_{3}} \psi\left(h_{2}, h_{3}\right)\right)}_{\mathbf{m}_{3 \rightarrow 2}}
\end{aligned}
$$

Example continued

Example

$$
p\left(h_{1: 4}\right)=\frac{1}{Z} \psi\left(h_{1}, h_{2}\right) \psi\left(h_{2}, h_{4}\right) \psi\left(h_{2}, h_{3}\right)
$$

$$
\begin{aligned}
p\left(h_{1}\right) & \propto \sum_{h_{2}, h_{3}, h_{4}} \psi\left(h_{1}, h_{2}\right) \psi\left(h_{2}, h_{4}\right) \psi\left(h_{2}, h_{3}\right) \\
& =\sum_{h_{2}} \psi\left(h_{1}, h_{2}\right)\left(\sum_{h_{4}} \psi\left(h_{2}, h_{4}\right)\right)\left(\sum_{h_{3}} \psi\left(h_{2}, h_{3}\right)\right) \\
& =\sum_{h_{2}} \psi\left(h_{1}, h_{2}\right) \mathbf{m}_{4 \rightarrow 2}\left(h_{2}\right) \mathbf{m}_{3 \rightarrow 2}\left(h_{2}\right)
\end{aligned}
$$

- Compute all messages for all possible (i, j) pairs with,

$$
\mathbf{m}_{i \rightarrow j}\left(h_{j}\right)=\sum_{h_{i}} \psi\left(h_{i}, h_{j}\right) \overbrace{\substack{\text { (}}}^{\text {Incoming Messages to node } i} \overbrace{i} \mathbf{m}_{/ \rightarrow i}\left(h_{i}\right)
$$

Figure is taken from Yedidia et al. 2001.

- Compute all messages for all possible (i, j) pairs with,

$$
\mathbf{m}_{i \rightarrow j}\left(h_{j}\right)=\sum_{h_{i}} \psi\left(h_{i}, h_{j}\right) \overbrace{\prod_{I \in \mathcal{N}(i) \backslash j} \mathbf{m}_{l \rightarrow i}\left(h_{i}\right)}^{\text {Incoming Messages to node } i}
$$

Figure is taken from Yedidia et al. 2001.

- The Belief for node i is $B\left(h_{i}\right)=p\left(h_{i}\right)=\prod_{j \in \mathcal{N}(i)} \mathbf{m}_{j \rightarrow i}\left(h_{i}\right)$.
- Compute all messages for all possible (i, j) pairs with,

$$
\begin{aligned}
& \mathbf{m}_{i \rightarrow j}\left(h_{j}\right)=\sum_{h_{i}} \psi\left(h_{i}, h_{j}\right) \\
& \overbrace{\prod_{i \in \mathcal{N}(i) \backslash j} \mathbf{m}_{l \rightarrow i}\left(h_{i}\right)}^{\text {Incoming Messages to node } i}
\end{aligned}
$$

Figure is taken from Yedidia et al. 2001.

- The Belief for node i is $B\left(h_{i}\right)=p\left(h_{i}\right)=\prod_{j \in \mathcal{N}(i)} \mathbf{m}_{j \rightarrow i}\left(h_{i}\right)$.
- One pass from leaves to root and one pass from leaves to root, and we are done.
- Compute all messages for all possible (i, j) pairs with,

$$
\begin{aligned}
& \mathbf{m}_{i \rightarrow j}\left(h_{j}\right)=\sum_{h_{i}} \psi\left(h_{i}, h_{j}\right) \\
& \overbrace{\prod_{i \in \mathcal{N}(i) \backslash j} \mathbf{m}_{l \rightarrow i}\left(h_{i}\right)}^{\text {Incoming Messages to node } i}
\end{aligned}
$$

Figure is taken from Yedidia et al. 2001.

- The Belief for node i is $B\left(h_{i}\right)=p\left(h_{i}\right)=\prod_{j \in \mathcal{N}(i)} \mathbf{m}_{j \rightarrow i}\left(h_{i}\right)$.
- One pass from leaves to root and one pass from leaves to root, and we are done.
- BP converges to true beliefs in trees. What about general graphs?

Loopy Belief Propagation

- We can still run BP on a loopy graph. It converges (most of the time) in practice!
- Example:

(Left) Original Image, (Center) Noisy Image (Right) Image cleared with BP

Plan

Main Questions in LVMs
 Mixture Model Example

Exploring some models

Monte Carlo Epilogue

Monte Carlo Methods for Inference

- As we have seen, obtaining the posterior can be difficult.

Monte Carlo Methods for Inference

- As we have seen, obtaining the posterior can be difficult.
- Monte Carlo methods are about drawing samples from the posterior.

Monte Carlo Methods for Inference

- As we have seen, obtaining the posterior can be difficult.
- Monte Carlo methods are about drawing samples from the posterior.
- One instance of these methods is Gibbs sampling. (Special case of Metropolis-Hastings algorithm)

Gibbs Sampling

- This is a Markov Chain Monte Carlo algorithm.
- This is a Markov Chain Monte Carlo algorithm.
- The key idea: Drawn samples form a Markov chain. And, the stationary distribution is the posterior!
- This is a Markov Chain Monte Carlo algorithm.
- The key idea: Drawn samples form a Markov chain. And, the stationary distribution is the posterior!
- Gibbs sampling is an instance of Metropolis-Hastings sampling with a particular transition kernel.

Input: A model structure with variables $h_{1: N}$
Output: Samples $h_{1: N}^{1: E}$
while You are not satisfied, (say $e \leq E$) do
for $n=1: N$ do
$h_{n} \sim p\left(h_{n} \mid h_{1: N}^{-n}\right)$
end for
end while

Let's derive a Gibbs sampler

- $p\left(h_{n} \mid h_{1: N}^{-n}\right)$ is known as the full conditional. It is generally easy to derive/sample from. An example:

$$
p\left(x_{1: 4}\right)=\frac{1}{Z} \psi_{1,2}\left(x_{1}, x_{2}\right) \psi_{2,4}\left(x_{2}, x_{4}\right) \psi_{1,3}\left(x_{1}, x_{3}\right) \psi_{3,4}\left(x_{3}, x_{4}\right)
$$

$$
\begin{aligned}
p\left(x_{1} \mid \text { others }\right) & \propto \psi_{1,2}\left(x_{1}, x_{2}\right) \psi_{1,3}\left(x_{1}, x_{3}\right) \\
p\left(x_{2} \mid \text { others }\right) & \propto \psi_{1,2}\left(x_{1}, x_{2}\right) \psi_{2,4}\left(x_{2}, x_{4}\right) \\
p\left(x_{3} \mid \text { others }\right) & \propto \psi_{1,3}\left(x_{1}, x_{3}\right) \psi_{3,4}\left(x_{3}, x_{4}\right) \\
p\left(x_{4} \mid \text { others }\right) & \propto \psi_{2,4}\left(x_{2}, x_{4}\right) \psi_{3,4}\left(x_{3}, x_{4}\right)
\end{aligned}
$$

- Here's our Gibbs sampler! others is essentially the variables that have functional dependence. It is known as the Markov blanket.

Gibbs Sampling in Action

Sampling from a 2D Gaussian with Gibbs sampling. Figures are taken from C.Bishop's and D.Barber's books.

Conclusions

- If you learn Bayesian machine learning/graphical models, you don't need to learn anything. (semi-true)
- Great Pedagogical Tool. (true)
- Great to build unsupervised models. / Model Selection.
- Things I wanted to but couldn't talk about: Gaussian Processes (Probabilistic Kernel Methods).
- Active Research Fields: Stochastic Variational Inference, Probabilistic Programming (to avoid going through tedious algebra), Efficient Sampling Methods, Likelihood-free methods (GANs - next time)

