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1 Introduction

In this report we derive the variational Bayes procedure described in Blei, Jordan 2006 (Vari-
ational Inference for Dirichlet Process Mixtures) for an infinite mixture model. We will use a
Gaussian observation model with known covariances for the sake of simplicity.

1.1 Generative Model

The generative model we’ll be working on is a Gaussian mixture model (GMM). We have priors
on the cluster means and mixing proportions. The generative model is defined as follows:

7 ~Dirichlet(aq, ag, .. ., ak)
Kk NN(,U/]{:;,U/OaEO)a Vk€{177K}
zn, ~Discrete(r), Vne{l,...,N}
In NN(xn;,ukvz), vne{l,...,N}

2 Variational Bayes Algorithm for the Finite Case

The log-joint probability distribution is decomposed as follows:

K N K

N
log p(z1n, 218, Ty k) = D D [2n = K] log p(an|pn) + > log plzalm) + Y log p(u) + log p(r)
n=1 k=1 n=1 k=1
(1)

With variational Bayes we approximate the joint distribution with the following factorized
distribution:

G210, 7, ) = (H Q(Zn)> <H Q(Mk)> g(7) (2)
n=1 k=1

Then we derive the variational distributions.



2.1 Means .5

Let us start with means p1.x:

N K
108 (k) =Eq(zyn)a(m) | D 1zn = klog p(an k) + > log plyuk)
n=1 k=1
N K
= Z [2n = k) log p(n| k) + Y log plik) (3)
n=1 k=1

Let us define Nj, := S°Y_ E[z, = k]. Then, for Gaussian observation model we have the following

n=1
expression:
N
logq(px) =" =Y Elen = k] {(zn — 1) "S 7 (@n — ) } = (ke — 120)" S0 " (e — p10)
n=1

N
_+ZE[Zn_k]{ SRS e+ X fn}ﬂkzo p + 1 Xy o

n=1

N
=- %/U'k (NeZ™H+ 357 e + pip (Eo_luo +x7 ( > Elzn = W")) @

n=1

So, the variational distribution on gy, is the following:
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a(pe) = N (s i, (N2 + 251 ) (5)

where, i = (NkE_l + 261)_1 (Ealﬂo 4 2—1(2521]E[zn = k]xn)) If we assume that ¥ =
02I, and ¥y = o1, then ji becomes the following:

= 02,”0 + U% EnNZI ]E[Z"l - k]$n (6)
K Nyo + o2

Therefore, the resulting variational distribution is the following;:

a?uo + ol 25:1 Elz, = klan, ters N )
Nyo + o2 " Nyo? + o2

q(pr) :N(Mk;

2.2 Cluster Indicators zi.n

The logarithm of the variational distribution ¢(z,) can be written as follows:

K
l0g q(zn) =" Y [2n = K{=Eq(u) [k " 1x] + Equu (6] S 2 } + Z Eg () [log 7]
=1
K
=D lon = K (B 1k £ ] + 2B [1x] "E7 20 + Eq(my ) [log me]) (®)
k=1

:="log pr



So, this expression looks like a discrete distribution distribution with parameters fi1.x:

q(zn) = Discrete(zn; p1, D2, - - -, PK) (9)

2.3 Mixing Proportions my.x

The logarithm of the variational distribution ¢(71.x) is as follows:

N K K
log q(7) =" Z ZE[Z,L = k]logmy + Z(a — 1) log mg,
n=1k=1 k=1
K N
:Z (a—1+ZE[zn :k:]) log 7, (10)
k=1 n=1

(£25

This looks like a Dirichlet distribution. So, the variational distribution is:

q(m) = Dirichlet(rm; @y, Qa, . . ., k) (11)

3 Variational Bayes Algorithm for the Infinite Case

The main trick for deriving the variational Bayes algorithm for the infinite case is to have the
stick-breaking prior on the mixing proportions. According to the stick breaking prior, the k’th
mixing proportion 7 is generated as follows:

K-1

me~ 8 | —ve [ (1= v)) (12)
j=1

v ~ B, 1), VE € {1,...,K} (13)

We then alter the derivation in the previous section for this prior. Notice that g(u1.x) remains
unaltered. We derive the novel ¢(v1.x) and ¢(z1.x) in the next section. Note that we integrate
out 7.5 since there is a deterministic relationship between 7.5 and vq.x.

3.1 For cluster indicators z;.y:

K,
log q(z) =" Z[Zn = K] ({~Eqquo 1k 27" 1] + 2B g [16] " 27 n} + Equy [log vi])
k=1
K/
+ 3 > HEfog(l — )] (14)
k=1



3.2 For stick breaking variables v;.x:

N
log q(vi:x/) =1E lz log p(zn|vi:k7) | + log p(vi:k)

n=1

N K’ N K’ K’
:ZZE 1ogvk+ZZEzn>k]log(17vk +Z (ov — 1) log(vg)
n=1k=1 n=1k=1 k=1
K’ N
(a -1+ ZE > log vi, + <Z Elz, > k}) log(1 — vk)} (15)

k=1 n=1

Notice that this looks like the log of a Beta pdf. Thus, we conclude that:
N N
q(vr) = B(a+ Y _Elz, = Z [2n > k] + 1) (16)
n=1 n=1

4 Expressions for expectations: (Infinite Case)

The expectations we need to compute are: B, [1F S 1k, Eq(un) k), Eq(op) [l0g vi], Ellog(1 —
vg)], Elzn, = k] and E[z, > k.

o Equ)[f S ur]: We choose X = 021 for simplicity. Then,

_ 1 | _
Eq(#k)[ﬂzz 1Nk} = ?Eq(uk)[:ug,uk} = ;(/‘zﬂk + LU}%)

o?po+0d 30 Elzn=klzn 2 = o?ag

NpoTto? ' Ok = NeoT4a? and L is the dimensionality of the

where, [, =
observations.

d ]Eq(uk)[ﬂk] = k-

o By llogvr] = ¥(ar) — (@ + Br)
where, @ = a + 25:1 E[z, = k] and B¢ = 25:1 Elzn, > k] +1

o By [log(l —vg)] = ¢(Br) — v(ax + Br)
L4 ]E[Zn = k] = ﬁk,n
where, P n X €xp (—Eq(uk)[ufz—luk] + 2EQ(uk)[Mk]TZ_1$n + Eq(vk)[log vg] + 25;11 Eq(vj)[log(l - vj)]).

. ]E[Zn > k] = Zj(:k—i-l Dk -



5 Pseudocode (Infinite Case)

All this fuss boils down to the following straightforward algorithm:

Algorithm 1 Variational Bayes for infinite GMM

Initialize p1.x 1.5
for e =1: maxiter do
for k=1:K' do
Ny, = ZnNzl Prn  (update pseudo counts)

2 2 N =
O R0+0G D o1 Phin

(update the means)

ﬂk = Nk 034_02
2 _2
o2 = ﬁ (update cluster variances)
ap = a+ 25:1 Prn and By = ij:l Prn +1  (update stick breaking parameters)

end for

for n=1: N do
for k=1:K' do
Dk,n OC €Xp (*Q%z(ﬁgﬂk + La}) + gofif e + 0(Bk) — Y(an + Br) + Z;:f P(ay) —la; + 53‘))-
end for
end for
end for

Please note that the updating order of the parameters is arbitrary, and one can use a different
updating order.



