
Efficient Implementation of the Tensor Power Method

Y.Cem Sübakan

October 14, 2014

1 Introduction

Tensor Power method is used to extract model parameters out of a moment tensor [1].
A naive implementation of this method would explicit store the full tensor. This may
be limiting for observations with large dimensionality. In this write-up we describe how
to perform tensor power iterations without explicitly forming the moment tensor.

2 Eigenvectors of a tensor

First of all let’s define the operation on the tensor A ∈ Rn1×n2×···×np we will use exten-
sively:

[A(V1, V2, . . . , Vp)]i1,i2,...,ip =
∑

j1,...,jp

Aj1,...,jp [V1]j1,i1 [V2]j2,i2 . . . [Vp]jp,ip (1)

where, Vk ∈ Rmk×nk and consequently A(V1, V2, . . . , Vp) ∈ Rm1×m2×···×mp . Examples:

• Matrix - matrix multiplication: A(V1, V2) = V >1 AV2, where A ∈ Rn1×n2 .

• Matrix - vector multiplication: [A(I, v)]i =
∑

j1,j2
Aj1,j2Ij1,ivj2 =

∑
j2
Ai,j2vj2 ,

where A ∈ Rn1×n2 , I ∈ [0, 1]n2×n2 is an identity matrix and v ∈ Rn2 is a vector.

Now, let’s consider the mapping u→ A(I, u, u):

[A(I, u, u)]i =
∑

j1,j2,j3

Aj1,j2,j3Ij1,iuj2uj3 =
∑
j2,j3

Ai,j2,j3uj2uj3 =
∑
j2,j3

Ai,j2,j3(e>j2u)(e>j3u)

(2)

where, e1:K is the canonical basis. We say that the vector u ∈ Rn is an eigenvector
with eigenvalue λ ∈ R if we have,

A(I, u, u) = λu. (3)

Now, if the tensor has the special structure A =
∑K

k=1wk µk ⊗ µk ⊗ µk, we have the
following output:

1



[A(I, u, u)]i =
∑

j1,j2,j3

K∑
k=1

wk Ij1,iµk,j1µk,j2µk,j3 uj2uj3 (4)

=
∑
j2,j3

K∑
k=1

wk µk,i (uj2µk,j2) (uj3µk,j3)

=

K∑
k=1

wk µk,i

(
u>µk

)(
u>µk

)
=

K∑
k=1

wk µi,j1

(
u>µk

)2
Further, if the parameter vectors µ1:K are orthonormal to each other, we have

A(I, µk′ , µk′) = wk′µk′ . (5)

So, µk′ is an eigenvector with corresponding eigenvalue wk′ of the orthogonal tensor
A.

3 Efficient Implementation of Tensor Power Iterations

Tensor power iterations to find the eigenvectors are essentially about successive appli-
cation of the operation A(I, u, u), which we have introduced in the previous section.
The most straightforward implementation would be to form the tensor A explicitly, and
apply the operation until convergence. However, since the tensor is composed of sum of
rank-1 tensors, we can avoid forming the tensor explicitly which would result in a much
more efficient implementation.

The empirical moment tensor we are interested in is:

M3 =

K∑
k=1

wk µk ⊗ µk ⊗ µk ≈
1

N

N∑
n=1

xn ⊗ xn ⊗ xn (6)

But this tensor is not orthogonal. We orthogonalize it with a whitening matrix W . So,
the orthogonal tensor we are interested in decomposing is,

[M̃3]i1,i2,i3 = [M3(W,W,W )]i1,i2,i3 ≈
1

N

∑
j1,j2,j3

N∑
n=1

xn,j1xn,j2xn,j3Wj1,i1Wj2,i2Wj3,i3 (7)

=
1

N

N∑
n=1

∑
j1

Wj1,i1xn,j1

∑
j2

Wj2,i2xn,j2

∑
j3

Wj3,i3xn,j3


So,

M̃3 =
1

N

N∑
n=1

(
W>xn

)
⊗
(
W>xn

)
⊗
(
W>xn

)
(8)

2



Now let’s look at M̃3(I, u, u):

[M̃3(I, u, u)]i =
1

N

∑
j1,j2,j3

N∑
n=1

Ij1,i

(
W>xn

)
j1
uj2

(
W>xn

)
j2
uj3

(
W>xn

)
j3

(9)

so,

M̃3(I, u, u) =
1

N

N∑
n=1

(
W>xn

)(
u>W>xn

)2
(10)

Therefore, the operation M̃3(I, u, u) can be computed without explicitly forming the

three dimensional tensor M̃3. Finally note that,

M̃3(u, u, u) =
1

N

N∑
n=1

(
u>W>xn

)3
(11)

which is the generalized Rayleigh quotient and is equal to the eigenvalues of M̃3.

4 Dealing with Nuisance Terms in GMM

In GMM learning unfortunately there are nuisance terms in GMM third order moment
to make the life a little bit more difficult:

E[x⊗ x⊗ x] =
K∑
k=1

wk µk ⊗ µk ⊗ µk + σ2

(
L∑
l=1

m⊗ el ⊗ el +
L∑
l=1

ek ⊗m⊗ el +
L∑
l=1

el ⊗ el ⊗m

)
(12)

So,

M3 =E[x⊗ x⊗ x]− σ2
(

L∑
l=1

m⊗ el ⊗ el +

L∑
l=1

ek ⊗m⊗ el +

L∑
l=1

el ⊗ el ⊗m

)
(13)

≈ 1

N

N∑
n=1

xn ⊗ xn ⊗ xn − σ2
(

L∑
l=1

m⊗ el ⊗ el +
L∑
l=1

ek ⊗m⊗ el +
L∑
l=1

el ⊗ el ⊗m

)
And,

M̃3 = M3(W,W,W ) =
1

N

N∑
n=1

W>xn ⊗W>xn ⊗W>xn (14)

− σ2
(

L∑
l=1

W>m⊗W>el ⊗W>el +
L∑
l=1

W>ek ⊗W>m⊗W>el +
L∑
l=1

W>el ⊗W>el ⊗W>m

)

3



So,

M̃3(I, u, u) =
1

N

N∑
n=1

W>xn

(
u>W>xn

)2
(15)

− σ2
(

L∑
l=1

W>m⊗ u>W>el ⊗ u>W>el +
L∑
l=1

W>el ⊗ u>W>m⊗ u>W>el +
L∑
l=1

W>el ⊗ u>W>el ⊗ u>W>m

)

=
1

N

N∑
n=1

W>xn

(
u>W>xn

)2
− σ2

W>m L∑
l=1

(
u>W>el

)2
+ 2u>W>m

L∑
l=1

W>el(u
>W>el) +

���������������L∑
l=1

W>el(u
>W>el)(u

>W>m)


=

1

N

N∑
n=1

W>xn

(
u>W>xn

)2
− σ2

(
W>m

L∑
l=1

(
u>W>el

)2
+ 2u>W>m

(
W>Wu

))

Finally,

M̃3(u, u, u) =
1

N

N∑
n=1

(
u>W>xn

)3
− 3σ2

(
u>W>m

L∑
l=1

(
u>W>el

)2)
(16)

5 Simultaneous Iterations

Instead of the deflation method in the original paper, we can simultaneously apply the
operation M̃3(I, uk, uk) for all vectors u1:K . The problem with that approach is that some
vectors may converge to the same eigenvector. The remedy for this is to orthogonalize
the vectors at every iteration. This eigenvector algorithm is known as the Simultaneous
Iterations [2] in the numerical linear algebra literature.

References

[1] Anandkumar, A., R. Ge, D. Hsu, S. Kakade and M. Telgarsky, “Tensor Decomposi-
tions for Learning Latent Variable Models”, arXiv:1210.7559v2 , 2012.

[2] Trefethen, L. N. and I. David Bau, Numerical Linear Algebra, SIAM, 1997.

4



Algorithm 1 Simultaneous Iterations for Tensor Eigenvectors

Input: Data matrix X, Whitening matrix W .
Output: Estimated model parameters µ̂1:K and ŵ1:K .

Initialize u
(0)
1:K with an orthonormal set of vectors.

for τ = 1 : maxiter do
for k = 1 : K do

vk = M̃3(I, u
(τ−1)
k , u

(τ−1)
k ) (Apply Equation 10)

vk = vk/‖vk‖2 (Normalize)
end for
u
(τ)
1:KR = v1:K (Orthogonalize using QR factorization)

end for

for k = 1 : K do
λk = M̃3(u

(τ−1)
k , u

(τ−1)
k , u

(τ−1)
k )

µ̂k = λk(W
>)†u

(τ)
k , ŵk = 1/

√
λk

end for

5


