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ABSTRACT Gaussian mixture models, histogram clustering [4, 5]. The

Image segmentation is an important problem which addressg%a'? (frawba::hk of thes_e worl\ljls Is that the thdeltS do noj[ hz;\:e
the needs of lots of biomedical applications. In this work, w spatial Smoothness priors. VIoreover, we have to spgmfy €
number of segments that is expected to be found a-priori. The

adress the problem with MRF-coupled mixture models. In 2
the standard finite mixture models, the number of Segmengroblem of finding the number of clusters can be adressed by

that we are supposed to find in an image is fixed. Wit thgtandard_ model selection. However this is an expensive and
demanding process. An elegant way to solve this problem

Bayesian non-parametrics formulation we automaticallg fin is to anplv Non-narametric Bavesian methods. For example
the number of segments by considering an infinite mixtur ' apply i\on-p Y . o P
he infinite mixture model proposed in 2000, [6], is a clus-

model which consists of infinite number of clusters. We applt rina model where w tomatically ch the number of
the MRF-coupled infinite mixture model on some biomedical s g Model where we automatically choose the number o
clusters. The idea that follows is to couple infinite mixture

images and show that with IMM, we are able to automatically

determine the number of kinds of objects differing from themodel W'th the Markov_ random f|e_|ds to_obtam an image
background. segmentation model which automatically finds the number of

segments found within the image. This has been done in [7],

Index Terms— Image Segmentation, Infinite Mixture which also handles infinite mixture models within the more
Models, Markov Random Fields, Bayesian Non-Parametricsgeneral framework of Dirichlet processes. The goal of this

work is to provide a simpler model for image segmentation
1. INTRODUCTION using Bayesian Non-Parametrics paradigm.
The rest of the paper is organized as follows: In the
In image segmentation, the goal is to segment the objects fellowing section we'll introduce the finite mixture models
a scene as accurately as possible. One of the most prongilong with Markov Random Fields. Then we will talk on
nent use of image segmentation algorithms are in biomedic&iow to couple finite mixture models with MRFs. Finally
applications. Generally the goal is to segment patholdgicave introduce Infinite mixture models. In the last section we
parts from the rest so that the medical stuff can diagnose thgrovide results obtained using both models.
status of the patient more easily and more accurately. In a
particular application called lesion segmentation, thal §®
to distinguish the slightly differing (intensity-wise) aded
smooth regions from the background.

Most of the initial work are based on heuristics like
thresholding and filtering. One example is [1]. These apgome of the most frequent notations used in the paper are as
proaches clearly lack robustness due their lack of gemgrali t5)1ows:

There are also in-between work which can be dubbed quasi-

heuristics which are based on algorithms such as region o x;;; element in the’th row and;j’th column

growing. We also have the probabilistic version. [94-98]

Kupunski. Most of the initial probabilistic work is based on e z;.; elements of: from 1 to I.

Markov random fields. However, they are generally maxi-

mum likelihood or at best MAP based, which are prone to e 1.7 ;.s; elements in the row rangeto I and column

2. METHODOLOGY

2.1. Notation

under or overfitting. An example is [2]. There are some re- rangel to J.

cent works which employ non-probabilistic machine leagnin N

techniques such as Boosting [3]. . x;}{u; elements in the row rangeto I and column
In the probabilisticimage segmentation camp, to give sev- rangel to J, except the element in the&th row and

eral examples, there are works based on k-means clustering,  j"'th column.



. n,;ij; number of elements in clustérexcept the ele- 2.3. Markov Random Fields (MRF)

ment in the:”’th row and;’th column. . . . .
Markov Random Fields are flexible tools to impose a-priori

In the following sections we’'ll introduce the models that constraints on structures like images. It basically mottels
make up to the ultimate segmentation model. We will de<al interactions to impose a global constraint on the data. A
scribe the inference algorithms that are related with thie ul markov random field is described using a Boltzmann distribu-
mate segmentation model. tion:

1
2.2. Finite Mixture Models (FMM) p(z) = - exp (~E(z)) )

Fortwo dimensional data;, (i € {1...1}, j€{l...J}), whereE(z) is the energy function and defined as follows:
a finite mixture model generates each data itgmfrom an

observation density'(z;;; %) by randomly assigning them Z Z Z (245, Zmmn) (6)
to the clustek, wherek € {1... K} which is associated with
parameter®;. The cluster assignments are done using the
indicator variables:;; which comes from a generic discrete
distribution, Discretéz;;; ). The parameter8, are drawn
from the H distribution which is conjugate td"(x;;|0x).

(A non-conjugate distribution could also be chosen, how-
ever it would prevent the analytical derivations) The migtu
proportionsr;, comes from a Dirichlet distribution which is

i j m,neC;;

E(z5)

This says us that the total energy, is dependent on the sum of
local energied”(z;; ), which are defined on the neighborhood
systenC;;. T'(z;j, zm») is @ function that favors continuity in
labelsz;;. For discrete inputs andb, T'(a, b) is defined as;

conjugate to the discrete distribution from which the iraddic 5 fa=b
variables are drawn from. All in all, a standard, parametric (a,b) {_ ) “= (7
finite mixture model can be defined as follows: g ifa#bd

e Mixture proportionsry. whereg is a non-negative constant. So, if the labgl

is identical to its neighbors, it increases the energy wireh
mla ~ Dirichlet(o/K,...,a/K) (1) creases the likelihood of its happening. Therefore, our pur
pose in using MRFs in the image segmentation model is to
Parameter§;. x impose a continuity prior on labels.

OslH ~ H (2) ' 2.4. FMM - MRF coupled model

The finite mixture model alone to segment an image would
be a mere clustering of intensity value without taking inte a
zijlm  ~  Discretdr) (3)  count any spatial information whatsoever. By assuming that
objects in an image form an closed, smooth surface, we en-
force the labels to be spatially smoothly generated. A finite
mixture model with the additional spatial constraints can b
viilzig O~ F(0k) (4) defined like a finite r’r-1ixt.ure modgl as defined in sec'Fipn 2.2,
except that now, the indicator variablgs are not condition-
ally independent giverr, but dependent on its neighbors in

Cluster indicator variables;.; 1.;

Data itemsry.71.5

The corresponding directed graph is given in figure 1.

Cij.
@4!—@ « p(zij |777 Zmmns (mn) Ecij) X
ket K l Discretdr) x exp(~ > T(zij, 2mn))  (8)
mn€eC;;

Q ._® A graphical model for this model can be constructed as shown
in fig. 2.

ije{l... Iy x{1..

2.4.1. Inf ith Gi li
Fig. 1. The directed graphical model for a Finite Mixture nference with Gibbs sampling

Model Gibbs sampling is a Markov Chain Monte-Carlo algorithm
which draws samples from the posterior distribution of the



Algorithm 1 Regular Gibbs Sampling for FMM-MRF model
initialize 01k, 7, 21.1,1..
forr=1—1T do

fori=1—1Ido
forj=1— Jdo
drawz]; from p(z;;|others)
draw§;, from p(0y|others).
drawn” from p(w|others).
end for
end for
end for

Fig. 2. The directed graphical model for the MRF—coupIedWe have to derive the predictive full conditional

finite mixture model p(zijk|Z;;{1:J,z1:171:.]> x (13)

p(zijk = 1|{Zmn -mn 7& ijazmnk = 1})

target variables. What we have to do is to write the full4oin ..
g i Xp(minxmn :mn#’mazmnk = 1})

distribution, and derive the full conditionals:
We then write the necessary integration ovemdé;. k

p(m, 015, 21:1,1:7, T1:1,1:7) 9)
K LJ LJ P(zije = Uz11. 0 T1:00:0) (14)
= p(m) H p(0k) p(2ij|2mn € Cij) H p(Tij|2ij, 01:x) K K
k=1 i=1,j=1 i=1,j=1 I'(a) a/K—1 o
’ , X | =————— T H m " dm
K 1,J K [I,T(a/K) el el
=p(m) [T H () [ exp(= > Tz 2mn) K
k=1 i=1,j=1k=1 mneCi; /H H(0)F (i 0k) II  Fmnbi)dbrx
1,J K k=1 m,n#i,j:zjr=1
Zijk
x [1 70 P(@i5 {@mnimnAiG, 2mn=1})
i=1,j=1k=1
_ _ _ x exp(— Z Z T(2ij, Zmn))
Herez;; is a vector which has only itg'th element 1 and else ij mneCi
zero. Therefore it selects thiéth element. Then we derive (15)

the full conditionals for each variable by only considerihg
terms that have functional dependencies: The regular Gibhg, is the number of data items assigned to clugteNote
sampler for the finite mixture model is as follows: that to get the expression for predictive dengity.; |{z» :
mn # ij, zmnk = 1}) the observation model needs to be
specified. After having the integrations worked out (See Ap-

P(Ok|others) ocH (k) N H F(6r) (10) " pendix A for details), we get the following expression foe th
LIizijn=1 full conditional:
p(w|others) =Dirichlet(a/K + nq,...,a/K + ng) 5
(11) p(zijk = 1|Z;}{1:J7$1:I,1:J) X (16)
—i,j
p(ziji = l|others) xmpF(0)) exp(— Z T (2ij, Zmn)) a/K +n, - ) iy 1
mnec; atn—1 p(xzjl{wmn : mn#”vzmnk })
(12) <exp(— > T(zij, zmn))
mneClyj

2.4.2. Inference with Collapsed Gibbs sampling

. . . . 2.5. Infinite Mixture Model with MRF li
In collapsed Gibbs sampling, we integrate out the variables niinite Wixiure Modet wi coupiing

that we are not interested in. Since this is an image segmentkn infinite mixture model, we take the number of clusters to
tion algorithm, the important thing is to infer cluster indior  infinity. The easiest way to derive an inference algorithmafo
variablesz;.; 1.;. Therefore we integrate out the parametersMRF-coupled mixture model with an infinite number of clus-
01.x and mixing proportiong. To derive the Gibbs sampler, ters is to consider the collapsed Gibbs sampler we derived fo



Algorithm 2 Collapsed Gibbs Sampling for FMM-MRF Algorithm 3 Collapsed Gibbs Sampling for IMM-MRF

model model
initialize 21:0,1:J initialize 21:0,1:J
forr=1—1T do forr=1—1T do
fori=1—Ido fori=1— Ido
forj=1— Jdo Ny forj=1— Jdo By
draw z]; from p(zij1, = 1|z;}{1:_7,x1:1_’1:(]) fjraw,z[j from p(zi, = 1|z;}{1:J, T1:0.1:7)
end for if Zsz(KJrl) = 1then
end for K=K+1
end for end if
end for
end for

a MRF-coupled finite mixture model in section 2.4.2. What gnd for
we do is to assume that the number of clust&rés a very
large number and onl§™ of the clusters are occupied. We
lump all the empty clusters together. Then the full conditio e Prior:
als for the empty clusters turns out to be as follows:

H(0k) = N (ur; pto, (o)) "G (N a0, Bo)  (21)

p(zijr =1,k = €mpty|Z;§{1;J7$1:1,1:J) x (17) _ o
KK Some results on some 2D-liver scans are given in fig. 3.
O‘iKp(xij) x exp(—4p) In the medical image experiments, the parameter setting
a+n—1 is: ko = 0.001, a9 = 10000, By = 1000, = 0.001, 8 =

What we essentially do to derive these three terms is to cor?90. We setu, to the mean of the observed image. We started
sider eq. (16), and apply it for the case where we assign a dattae experiments witli = 2. It finds K = 3 as expected. We
item to an empty cluster. In this case since there is no membéee the advantage of using infinite mixture by seeing that the
in that clusterp, "’ = 0, there is nothing to conditiop(z;;) ~ model not only segments dark stains, but also it is able to
to (See Appendix A to have the details on how obtain thiglistinguish the other lighter regions from the background.
marginal), and the all of the neighbors are different from th an another type of image, we obtain the result in fig. 3. We
new guy, so the MRF coupling term returns a penalty-dfs.  see that in the algorithm successfully segments the circula
Then we takeX — oo to derive the collapsed Gibbs sampler sign. ItfindsK = 4 segments as expected.

for the infinite model. Full conditionals are as follows:

¢ Assignment to an already occupied cluster: 4. CONCLUSION AND FUTURE WORK
p(ziji = 12171, T 1) (18)  In this work, we have implemented collapsed Gibbs samplers
i for a MRF coupled finite mixture model and a MRF coupled
o +kn — 1p(xij|{$mn SN F 0, Zmnk = 1}) infinite mixture model. We have seen that using infinite mix-
ture enables us to automatically determine the number of seg
xexp(— Y T(zij, 2mn)) ments which enables us to identify different types of olsject
mneCi; presentin the scene. In this work, we used two types of obser-

vation models: A Gaussian model with fixed variance and a
fully Bayesian Gaussian observation model. Different obse
vation models such as histogram clustering model or Poisson
clustering model can also be implemented in future.

e Assignment to an empty cluster:
p(zijs =1L, k= empty|z;}.{1:‘],$1:1_,1:(]) o (29)

ﬁp(%) x exp(—40)
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6. APPENDIX A: OBSERVATION DENSITIES

6.1. Gaussian Observation Model, fixed variance

For occupled clusters, the integral for the predictive dgns

P(xij|[{Tmn : MmN # 05, 2k = 1}) = (22)

/H Hk xz]yek) H F($mn,9k)d9k

m,n#i,jzijp=1

where,H () = N (uux; po; 05) andE (zmn; 0) = N (@ns i, o).
Then, the procedure is to complete the squares to form a dis-

tribution in terms off;,. Having done that, this distribution

Fig. 3. Left column: The 2D liver scans, Right column: Seg-integrates out to one, and we form another distribution with
mented image the remaining terms functionally relatedtg;,. When we do
this, the distribution obtained is as follows:

(i {Zmn : M0 F# 04, Zmnk = 1}) = N(xi5;m,v)
; _ %%+ (n,;j + 1)o3) 23)
o2+ n; 7o}

.. —1
2 mnti Tij i1
: =1 V1) Ho n
m =v mn#ij Zank + 55 k4 + —
o ojo o og

2 2 ..
0o + 035 Zmn;ﬁij Zomp=1 Lij

24
o2+ n, g2 @4)
For empty clusters:
Fig. 4. Left column: Original Images, Right column: Seg- p(zi;|[{Zmn : mn # ij, Zmnk = 1}) (25)

mented image
:/H(Qk)F(zw,Qk)ko

=N (ij; 0;0% + o7)



6.2. Gaussian Observation Model, Full Bayesian Note that: [T, 7" = Hf":"w:l [T, 7i*. So, this is a
Dirichlet distribution. To obtain the margina(z1.7 1.7|«) is
to multiply and divide this expression with proper normatiz
tion constant so that the distribution integrates out ta a¥e
get:

For analytical convenience, we use precision instead &f var
ance. The observation density is

M) ILe D+ a/K)
i, T(a/K)  Tlnta)

. Prior is: p(z1:01:0|Q) =

H(0r) = N (1 o, (koN) )G (A; o, Bo)

(34)

wheren = >~ n. Then to obtain the predictive distribution
, which is also known as Normal-Gamma density. For occup(zijx = 1|21.7;. ), we use the propery(a + 1) = al'(a):
pied clusters, the predictive density is:

P(Tij|[{Tmn : MN # 0J,2mnk = 1}) = ['(a) H?:1 I'(ng + a/K)
K (35)
t(xij; pins Ay 200,)  (26) [T, T(a/K) IL(n+ a)
K

() H;{;l I(ng +a/K —1) H n;ij +a/K
Hf:lr(a/K) F(n+a-1) n+a-—1

t(.) is known as student-t distribution. The parameters are; =

k=1

+ _U i L
n :% (27) P(21rne) P(zijl21.)
Ko ng.
:% (28) SO, forp(zi;i = 1|21,f,.,), we simply drop the multiplica-
n{fn tion overk.
o =ag +n;, 7 /2 (29)
Kn =Ko + /2 (30)

1 rkong 7 (T — po)?
/Bn :ﬂo + 5 Z (IL'mn — j)Q 4 L_’ZO)
MNFAL: Zmnk=1 Q(HO + nk’ )

(31)

_ —ig
where,z = Zmn#j:zmk:l Tn /Ny
For empty clusters:

p(xz]|{$mn smn 7é ’Lja Zmnk = 1}) =
t(xij; o, Mo, 2a0)  (32)

whereAq = Boﬁg:il). Interested reader may refer to [9] for

the detailed derivation.

7. APPENDIX B: DIRICHLET DISTRIBUTION

In this part we’ll describe how to obtain marginal and pre-
dictive distributions for the indicator variableg;. The joint
distribution ofz;.7 ;..; andr is:

1,0

()
p(mla) x p(zij|m) =m0 (33)
i:Eﬂ ’ Hi(:l I'(a/K)
K K
X ng/Kfl X H T
k=1 k=1
D@ ] jo/Atmt

:Hi’(:l [a/K) k=1 ’



