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ABSTRACT

Image segmentation is an important problem which addresses
the needs of lots of biomedical applications. In this work, we
adress the problem with MRF-coupled mixture models. In
the standard finite mixture models, the number of segments
that we are supposed to find in an image is fixed. With the
Bayesian non-parametrics formulation we automatically find
the number of segments by considering an infinite mixture
model which consists of infinite number of clusters. We apply
the MRF-coupled infinite mixture model on some biomedical
images and show that with IMM, we are able to automatically
determine the number of kinds of objects differing from the
background.

Index Terms— Image Segmentation, Infinite Mixture
Models, Markov Random Fields, Bayesian Non-Parametrics

1. INTRODUCTION

In image segmentation, the goal is to segment the objects in
a scene as accurately as possible. One of the most promi-
nent use of image segmentation algorithms are in biomedical
applications. Generally the goal is to segment pathological
parts from the rest so that the medical stuff can diagnose the
status of the patient more easily and more accurately. In a
particular application called lesion segmentation, the goal is
to distinguish the slightly differing (intensity-wise) closed
smooth regions from the background.

Most of the initial work are based on heuristics like
thresholding and filtering. One example is [1]. These ap-
proaches clearly lack robustness due their lack of generality.
There are also in-between work which can be dubbed quasi-
heuristics which are based on algorithms such as region
growing. We also have the probabilistic version. [94-98]
Kupunski. Most of the initial probabilistic work is based on
Markov random fields. However, they are generally maxi-
mum likelihood or at best MAP based, which are prone to
under or overfitting. An example is [2]. There are some re-
cent works which employ non-probabilistic machine learning
techniques such as Boosting [3].

In the probabilistic image segmentation camp, to give sev-
eral examples, there are works based on k-means clustering,

Gaussian mixture models, histogram clustering [4, 5]. The
main drawback of these works is that the models do not have
spatial smoothness priors. Moreover, we have to specify the
number of segments that is expected to be found a-priori. The
problem of finding the number of clusters can be adressed by
standard model selection. However this is an expensive and
demanding process. An elegant way to solve this problem
is to apply Non-parametric Bayesian methods. For example
the infinite mixture model proposed in 2000, [6], is a clus-
tering model where we automatically choose the number of
clusters. The idea that follows is to couple infinite mixture
model with the Markov random fields to obtain an image
segmentation model which automatically finds the number of
segments found within the image. This has been done in [7],
which also handles infinite mixture models within the more
general framework of Dirichlet processes. The goal of this
work is to provide a simpler model for image segmentation
using Bayesian Non-Parametrics paradigm.

The rest of the paper is organized as follows: In the
following section we’ll introduce the finite mixture models
along with Markov Random Fields. Then we will talk on
how to couple finite mixture models with MRFs. Finally
we introduce Infinite mixture models. In the last section we
provide results obtained using both models.

2. METHODOLOGY

2.1. Notation

Some of the most frequent notations used in the paper are as
follows:

• xij ; element in thei’th row andj’th column

• x1:I elements ofx from 1 to I.

• x1:I,1:J ; elements in the row range1 to I and column
range1 to J .

• x−ij
1:I,1:J ; elements in the row range1 to I and column

range1 to J , except the element in thei’th row and
j′’th column.



• n−ij
k ; number of elements in clusterk except the ele-

ment in thei′’th row andj’th column.

In the following sections we’ll introduce the models that
make up to the ultimate segmentation model. We will de-
scribe the inference algorithms that are related with the ulti-
mate segmentation model.

2.2. Finite Mixture Models (FMM)

For two dimensional dataxij , (i ∈ {1 . . . I}, j ∈ {1 . . . J}),
a finite mixture model generates each data itemxij from an
observation densityF (xij ; θk) by randomly assigning them
to the clusterk, wherek ∈ {1 . . .K} which is associated with
parametersθk. The cluster assignments are done using the
indicator variableszij which comes from a generic discrete
distribution, Discrete(zij ;π). The parametersθk are drawn
from the H distribution which is conjugate toF (xij |θk).
(A non-conjugate distribution could also be chosen, how-
ever it would prevent the analytical derivations) The mixture
proportionsπk comes from a Dirichlet distribution which is
conjugate to the discrete distribution from which the indicator
variables are drawn from. All in all, a standard, parametric
finite mixture model can be defined as follows:

• Mixture proportionsπ1:K

π|α ∼ Dirichlet(α/K, . . . , α/K) (1)

• Parametersθ1:K

θk|H ∼ H (2)

• Cluster indicator variablesz1:I,1:J

zij |π ∼ Discrete(π) (3)

• Data itemsx1:I,1:J

xij |zij , θk ∼ F (θk) (4)

The corresponding directed graph is given in figure 1.
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i, j ∈ {1 . . . I} × {1 . . . J}

k ∈ 1 . . .K

Fig. 1. The directed graphical model for a Finite Mixture
Model

2.3. Markov Random Fields (MRF)

Markov Random Fields are flexible tools to impose a-priori
constraints on structures like images. It basically modelslo-
cal interactions to impose a global constraint on the data. A
markov random field is described using a Boltzmann distribu-
tion:

p(z) =
1

Z
exp (−E(z)) (5)

whereE(z) is the energy function and defined as follows:

E(z) =
∑

i

∑

j

∑

m,n∈Cij

T (zij , zmn)

︸ ︷︷ ︸

E(zij)

(6)

This says us that the total energy, is dependent on the sum of
local energiesE(zij), which are defined on the neighborhood
systemCij . T (zij, zmn) is a function that favors continuity in
labelszij . For discrete inputsa andb, T (a, b) is defined as;

T (a, b) =

{

−β if a = b

β if a 6= b
(7)

whereβ is a non-negative constant. So, if the labelzij
is identical to its neighbors, it increases the energy whichin-
creases the likelihood of its happening. Therefore, our pur-
pose in using MRFs in the image segmentation model is to
impose a continuity prior on labels.

2.4. FMM - MRF coupled model

The finite mixture model alone to segment an image would
be a mere clustering of intensity value without taking into ac-
count any spatial information whatsoever. By assuming that,
objects in an image form an closed, smooth surface, we en-
force the labels to be spatially smoothly generated. A finite
mixture model with the additional spatial constraints can be
defined like a finite mixture model as defined in section 2.2,
except that now, the indicator variableszij are not condition-
ally independent givenπ, but dependent on its neighbors in
Cij .

p(zij |π, zmn, (mn) ∈Cij) ∝

Discrete(π)× exp(−
∑

mn∈Cij

T (zij, zmn)) (8)

A graphical model for this model can be constructed as shown
in fig. 2.

2.4.1. Inference with Gibbs sampling

Gibbs sampling is a Markov Chain Monte-Carlo algorithm
which draws samples from the posterior distribution of the
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Fig. 2. The directed graphical model for the MRF-coupled
finite mixture model

target variables. What we have to do is to write the full-joint
distribution, and derive the full conditionals:

p(π, θ1:K , z1:I,1:J , x1:I,1:J ) (9)

= p(π)

K∏

k=1

p(θk)

I,J
∏

i=1,j=1

p(zij |zmn ∈ Cij)

I,J
∏

i=1,j=1

p(xij |zij , θ1:K)

= p(π)
K∏

k=1

H(θk)

I,J
∏

i=1,j=1

K∏

k=1

π
zijk
k exp(−

∑

mn∈Cij

T (zij, zmn))

×

I,J
∏

i=1,j=1

K∏

k=1

F (θk)
zijk

Herezij is a vector which has only itsk’th element 1 and else
zero. Therefore it selects thek’th element. Then we derive
the full conditionals for each variable by only consideringthe
terms that have functional dependencies: The regular Gibbs
sampler for the finite mixture model is as follows:

p(θk|others) ∝H(θk)
∏

i,j:zijk=1

F (θk) (10)

p(π|others) =Dirichlet(α/K + n1, . . . , α/K + nK)
(11)

p(zijk = 1|others) ∝πkF (θk) exp(−
∑

mn∈Cij

T (zij , zmn))

(12)

2.4.2. Inference with Collapsed Gibbs sampling

In collapsed Gibbs sampling, we integrate out the variables
that we are not interested in. Since this is an image segmenta-
tion algorithm, the important thing is to infer cluster indicator
variablesz1:I,1:J . Therefore we integrate out the parameters
θ1:K and mixing proportionsπ. To derive the Gibbs sampler,

Algorithm 1 Regular Gibbs Sampling for FMM-MRF model
initialize θ1:K , π, z1:I,1:J
for τ = 1 → T do

for i = 1 → I do
for j = 1 → J do

drawzτij from p(zij |others)
drawθτk from p(θk|others).
drawπτ from p(π|others).

end for
end for

end for

we have to derive the predictive full conditional

p(zijk|z
−ij
1:I,1:J ,x1:I,1:J) ∝ (13)

p(zijk = 1|{zmn : mn 6= ij, zmnk = 1})

× p(xij |{xmn : mn 6= ij, zmnk = 1})

We then write the necessary integration overπ andθ1:K :

p(zijk = 1|z−ij
1:I,1:J , x1:I,1:J) (14)

∝

∫
Γ(α)

∏

k Γ(α/K)

K∏

k=1

π
α/K−1
k

K∏

k=1

πnk

k dπ

∫ K∏

k=1

H(θk)F (xij ; θk)
∏

m,n6=i,j:zijk=1

F (xmn; θk)dθ1:K

︸ ︷︷ ︸

p(xij |{xmn:mn6=ij,zmnk=1})

× exp(−
∑

ij

∑

mn∈Cij

T (zij, zmn))

(15)

nk is the number of data items assigned to clusterk. Note
that to get the expression for predictive densityp(xij |{xmn :
mn 6= ij, zmnk = 1}) the observation model needs to be
specified. After having the integrations worked out (See Ap-
pendix A for details), we get the following expression for the
full conditional:

p(zijk = 1|z−ij
1:I,1:J , x1:I,1:J) ∝ (16)

α/K + n−i,j
k

α+ n− 1
p(xij |{xmn : mn 6= ij, zmnk = 1})

× exp(−
∑

mn∈Cij

T (zij , zmn))

2.5. Infinite Mixture Model with MRF coupling

In infinite mixture model, we take the number of clusters to
infinity. The easiest way to derive an inference algorithm for a
MRF-coupled mixture model with an infinite number of clus-
ters is to consider the collapsed Gibbs sampler we derived for



Algorithm 2 Collapsed Gibbs Sampling for FMM-MRF
model

initialize z1:I,1:J ,
for τ = 1 → T do

for i = 1 → I do
for j = 1 → J do

drawzτij from p(zijk = 1|z−ij
1:I,1:J , x1:I,1:J)

end for
end for

end for

a MRF-coupled finite mixture model in section 2.4.2. What
we do is to assume that the number of clustersK is a very
large number and onlyK∗ of the clusters are occupied. We
lump all the empty clusters together. Then the full condition-
als for the empty clusters turns out to be as follows:

p(zijk = 1, k = empty|z−ij
1:I,1:J ,x1:I,1:J) ∝ (17)

αK−K∗

K

α+ n− 1
p(xij)× exp(−4β)

What we essentially do to derive these three terms is to con-
sider eq. (16), and apply it for the case where we assign a data
item to an empty cluster. In this case since there is no member
in that cluster,n−i,j

k = 0, there is nothing to conditionp(xij)
to (See Appendix A to have the details on how obtain this
marginal), and the all of the neighbors are different from the
new guy, so the MRF coupling term returns a penalty of−4β.
Then we takeK → ∞ to derive the collapsed Gibbs sampler
for the infinite model. Full conditionals are as follows:

• Assignment to an already occupied cluster:

p(zijk = 1|z−ij
1:I,1:J , x1:I,1:J) ∝ (18)

n−i,j
k

α+ n− 1
p(xij |{xmn : mn 6= ij, zmnk = 1})

× exp(−
∑

mn∈Cij

T (zij , zmn))

• Assignment to an empty cluster:

p(zijk = 1, k = empty|z−ij
1:I,1:J , x1:I,1:J) ∝ (19)

α

α+ n− 1
p(xij)× exp(−4β)

3. RESULTS

In this section we provide some results obtained from the In-
finite mixture model with the following observation model:

• Observation density:

F (xmn; θk) = N (xmn;µk, λ
−1) (20)

Algorithm 3 Collapsed Gibbs Sampling for IMM-MRF
model

initialize z1:I,1:J ,
for τ = 1 → T do

for i = 1 → I do
for j = 1 → J do

drawzτij from p(zijk = 1|z−ij
1:I,1:J , x1:I,1:J )

if zτij(K+1) = 1 then
K = K + 1

end if
end for

end for
end for

• Prior:

H(θk) = N (µk;µ0, (κ0λ)
−1)G(λ;α0, β0) (21)

Some results on some 2D-liver scans are given in fig. 3.
In the medical image experiments, the parameter setting

is: κ0 = 0.001, α0 = 10000, β0 = 1000, α = 0.001, β =
290. We setµ0 to the mean of the observed image. We started
the experiments withK = 2. It findsK = 3 as expected. We
see the advantage of using infinite mixture by seeing that the
model not only segments dark stains, but also it is able to
distinguish the other lighter regions from the background.In
an another type of image, we obtain the result in fig. 3. We
see that in the algorithm successfully segments the circular
sign. It findsK = 4 segments as expected.

4. CONCLUSION AND FUTURE WORK

In this work, we have implemented collapsed Gibbs samplers
for a MRF coupled finite mixture model and a MRF coupled
infinite mixture model. We have seen that using infinite mix-
ture enables us to automatically determine the number of seg-
ments which enables us to identify different types of objects
present in the scene. In this work, we used two types of obser-
vation models: A Gaussian model with fixed variance and a
fully Bayesian Gaussian observation model. Different obser-
vation models such as histogram clustering model or Poisson
clustering model can also be implemented in future.
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6. APPENDIX A: OBSERVATION DENSITIES

6.1. Gaussian Observation Model, fixed variance

For occupied clusters, the integral for the predictive density
is:

p(xij |{xmn : mn 6= ij, zmnk = 1}) = (22)
∫

H(θk)F (xij ; θk)
∏

m,n6=i,j::zijk=1

F (xmn; θk)dθk

where,H(θk) = N (µk;µ0;σ
2
0) andF (xmn; θk) = N (xmn;µk, σ

2).
Then, the procedure is to complete the squares to form a dis-
tribution in terms ofθk. Having done that, this distribution
integrates out to one, and we form another distribution with
the remaining terms functionally related toxij . When we do
this, the distribution obtained is as follows:

p(xij |{xmn : mn 6= ij, zmnk = 1}) = N (xij ;m, v)

v =
σ2(σ2 + (n−ij

k + 1)σ2
0)

σ2 + n−ij
k σ2

0

(23)

m =v





(∑

mn6=ij:zmnk=1 xij

σ4
+

µ0

σ2
0σ

2

)(

n−ij
k

σ4
+

1

σ2
0

)−1




=
σ2µ0 + σ2

0

∑

mn6=ij:zmnk=1 xij

σ2 + n−ij
k σ2

0

(24)

For empty clusters:

p(xij |{xmn : mn 6= ij, zmnk = 1}) (25)

=

∫

H(θk)F (xij ; θk)dθk

=N (xij ; 0;σ
2 + σ2

0)



6.2. Gaussian Observation Model, Full Bayesian

For analytical convenience, we use precision instead of vari-
ance. The observation density is

F (xmn; θk) = N (xmn;µk, λ
−1)

. Prior is:

H(θk) = N (µk;µ0, (κ0λ)
−1)G(λ;α0, β0)

, which is also known as Normal-Gamma density. For occu-
pied clusters, the predictive density is:

p(xij |{xmn : mn 6= ij,zmnk = 1}) =

t(xij ;µn,Λ, 2αn) (26)

t(.) is known as student-t distribution. The parameters are;

µn =
κ0µ0 + n−ij

k

κ0 + n−ij
k

(27)

Λ =
αnκn

βn(κn + 1)
(28)

αn =α0 + n−ij
k /2 (29)

κn =κ0 + n/2 (30)

βn =β0 +
1

2

∑

mn6=ij:zmnk=1

(xmn − x̄)2 +
κ0n

−ij
k (x̄− µ0)

2

2(κ0 + n−ij
k )

(31)

where,x̄ =
∑

mn6=ij:zmnk=1 xmn/n
−ij
k .

For empty clusters:

p(xij |{xmn : mn 6= ij, zmnk = 1}) =

t(xij ;µ0,Λ0, 2α0) (32)

whereΛ0 = α0κ0

β0(κ0+1) . Interested reader may refer to [9] for
the detailed derivation.

7. APPENDIX B: DIRICHLET DISTRIBUTION

In this part we’ll describe how to obtain marginal and pre-
dictive distributions for the indicator variableszij . The joint
distribution ofz1:I,1:J andπ is:

p(π|α)×

I,J
∏

i=1,j=1

p(zij |π) =
Γ(α)

∏K
k=1 Γ(α/K)

(33)

×
K∏

k=1

π
α/K−1
k ×

K∏

k=1

πnk

k

=
Γ(α)

∏K
k=1 Γ(α/K)

K∏

k=1

π
α/K+nk−1
k

Note that:
∏K

k=1 π
nk

k =
∏I,J

i=1,j=1

∏K
k=1 π

zijk
k . So, this is a

Dirichlet distribution. To obtain the marginalp(z1:I,1:J |α) is
to multiply and divide this expression with proper normaliza-
tion constant so that the distribution integrates out to one. We
get:

p(z1:I,1:J |α) =
Γ(α)

∏K
k=1 Γ(α/K)

∏K
k=1 Γ(nk + α/K)

Γ(n+ α)
(34)

wheren =
∑

k nk. Then to obtain the predictive distribution
p(zijk = 1|z−ij

1:I,1:J), we use the propertyΓ(a+ 1) = aΓ(a):

Γ(α)
∏K

k=1 Γ(α/K)

∏K
k=1 Γ(nk + α/K)

Γ(n+ α)
(35)

=
Γ(α)

∏K
k=1 Γ(α/K)

∏K
k=1 Γ(nk + α/K − 1)

Γ(n+ α− 1)
︸ ︷︷ ︸

p(z−ij

1:I,1:J
)

K∏

k=1

n−ij
k + α/K

n+ α− 1
︸ ︷︷ ︸

p(zij |z
−ij

1:I,1:J
)

So, forp(zijk = 1|z−ij
1:I,1:J), we simply drop the multiplica-

tion overk.


