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Who is this kid?

I am with Paris Smaragdis’ group. This is my third semester here.

I do machine learning research (or so I claim).
Both my undergrad and masters are from electrical engineering,
Bogazici Uni. - Istanbul.
I started with Bayesian ML. My previous advisor was doing Bayesian
Machine Learning.
My research in one sentence:
I like big algorithms for small data, and I like NIPS/ICML style
machine learning.
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My research overview

I am interested in parameter estimation problem in latent variable
models (mixture models/ HMMs/ MRFs etc.).

In particular, I am working on Method of Moments (MoM) for
parameter estimation in LVMs. (Also known as Spectral Learning).
Score so far:

I M.Sc. Thesis
I 2 NIPS workshop papers
I 1 journal paper
I NIPS 2014 paper NEW!

WHY MoM estimators?
I They are cool, mathy and new (hip).
I Avoid the everlasting local optima issue. (No initialization!)
I Computationally much more efficient.
I Learning guarantees.
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Recent Research

M.Sc. Thesis: Two new MoM algorithms for time series clustering.
ICML 2014 submission: A Non-Negative Matrix Factorization (NMF)
based framework for learning HMM variants with MoM.

h1 h2 . . . hT

r1 r2 . . . rT

x1 x2 . . . xT

Switching HMM

r1
1 r1

2
. . . r1

T

x1 x2 . . . xT

r2
1 r2

2
. . . r2

T

Factorial HMM
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Recent Research: NIPS 2014 Paper

Paper accepted to NIPS 2014! (acceptance rate: 414/1678) A
Method of moments algorithm to learn mixture of HMMs.

Ak r1,n r2,n . . . rTn,n

hn

Ok x1,n x2,n . . . xTn,n

k = 1 . . .K n = 1 . . .N

It is unclear how to use standard MoM algorithms for this model.
However, we can learn an HMM with MoM.
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Recent Research: NIPS 2014 Paper

Key idea: Mixture of HMMs is an HMM with block diagonal transition
matrix.

I An MHMM with local parameters θ1:K = (O1:K ,A1:K , ν1:K , π) is an
HMM with global parameters θ̄ = (Ō, Ā, ν̄), where:

Ō =
[
O1 . . . OK

]
, Ā =


A1 0 . . . 0
0 A2 . . . 0

. . .
0 0 . . . AK

 , ν̄ =


π1ν1
π2ν2
...

πKνK

 .

The problem: Arbitrary permutation on parameter estimates,
Parameters of different clusters get mixed up.
Remedy: Block diagonal structure / spectral properties of the “global”
transition matrix.
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Recent Research: NIPS 2014 Paper
Ideally, we have a “clean” block diagonal structure. lime→∞ Ae reveals
a 3 cluster structure.
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In real world, we have noise on off-block diagonal elements. This
results in a global stationary distribution.
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Recent Research: NIPS 2014 Paper

The key question:

Can we recover a block diagonal structure despite the estimation noise?

  e: 1  

  r
t+1

  

  r
t
  

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

  e: 5  

  r
t+1

  

  r
t
  

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

  e: 10  

  r
t+1

  

  r
t
  

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

  e: 20  

  r
t+1

  

  r
t
  

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

If the noise is not too severe, then yes we can. (Experimental and
theoretical justification)
Notice: Given the moments, computational burden does not depend
on dataset size! (Unlike EM) COOL

Y. Cem Sübakan (UIUC CS) YCS Qual September 18, 2014 10 / 40



Recent Research: NIPS 2014 Paper

The key question:

Can we recover a block diagonal structure despite the estimation noise?

  e: 1  

  r
t+1

  

  r
t
  

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

  e: 5  

  r
t+1

  

  r
t
  

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

  e: 10  

  r
t+1

  

  r
t
  

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

  e: 20  

  r
t+1

  

  r
t
  

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

If the noise is not too severe, then yes we can. (Experimental and
theoretical justification)

Notice: Given the moments, computational burden does not depend
on dataset size! (Unlike EM) COOL

Y. Cem Sübakan (UIUC CS) YCS Qual September 18, 2014 10 / 40



Recent Research: NIPS 2014 Paper

The key question:

Can we recover a block diagonal structure despite the estimation noise?

  e: 1  

  r
t+1

  

  r
t
  

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

  e: 5  

  r
t+1

  

  r
t
  

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

  e: 10  

  r
t+1

  

  r
t
  

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

  e: 20  

  r
t+1

  

  r
t
  

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

If the noise is not too severe, then yes we can. (Experimental and
theoretical justification)
Notice: Given the moments, computational burden does not depend
on dataset size! (Unlike EM) COOL

Y. Cem Sübakan (UIUC CS) YCS Qual September 18, 2014 10 / 40



Outline

1 Me
My background
My research

2 Paper 1: Estimating Latent Variable Graphical Models using Moments
and Likelihoods

Introduction
Intro to method of moments for LVMs
The paper

3 Second Paper, The Visual Microphone: Passive Recovery of Sound from
Video

Introduction, The problem setup
Processing step

Y. Cem Sübakan (UIUC CS) YCS Qual September 18, 2014 11 / 40



Paper 1: Estimating Latent Variable Graphical Models using
Moments and Likelihoods

Standard MoM algorithms are not directly applicable to models
beyond HMM, GMM, LDA.

This work proposes a framework for learning general graphical models.
They divide the problem into two (three) stages, which helps
generalizing.
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Problem Definition

Let’s suppose we have the following graphical model:

hn

x1,n x2,n x3,n

n = 1 . . .N

h ∼ Discrete(π1:K )

x1|h ∼ N (µ1,h,Σ1)

x2|h ∼ N (µ2,h,Σ2)

x3|h ∼ N (µ3,h,Σ3)

Given {x1,n, x2,n, x3,n}Nn=1, can we estimate µ1,1:K , µ2,1:K , µ3,1:K?

Yes we can!
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The conventional way: EM

Maximum Likelihood is the first thing that comes to mind:

max
µ1:3

p(x1:3,1:N |µ1:3) = max
µ1:3

∑
h1:N

p(x1:3,1:N , h1:N |µ1:3)

We can use Jensen’s inequality by injecting a logarithm, and the
distribution q(h1:N):

log
∑
h1:N

p(x1:3,1:N , h1:N |µ1:3)
q(h1:N)

q(h1:N)
= logEq(h1:N)

[
p(x1:3,1:N , h1:N |µ1:3)

q(h1:N)

]
≥ Eq(h1:N) [log p(x1:3,1:N , h1:N |µ1:3)] + Hq

q(h1:N) = p(h1:N |x1:N , µ1:3) in EM. In E step q is updated. In M step
we maximize this lower bound. It is obviously prone to local optima.
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The other way: Method of Moments

The idea is to estimate the models parameters µ1:K by solving a
system of non-linear equations formed with moments E[gk(x)],
k ∈ {1, . . .K}:

E[g1(x)] =f1(µ1:K )

...
E[gK (x)] =fK (µ1:K )

Canonical Example: x ∼ G(a, b):

E[x ] =ab

E[x2] =ab2 + a2b2

→ b̂ =(E[x2]− E[x ]2)/E[x ]

â =E[x ]2/(E[x2]− E[x ]2)
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The new way: Method of Moments

hn

x1,n x2,n x3,n

n = 1 . . .N

hn ∼ Discrete(π)

x1|h ∼ N (µ1,h,Σ1)

x2|h ∼ N (µ2,h,Σ2)

x3|h ∼ N (µ3,h,Σ3)

Let’s write down some moments:

P2 := E[x1 ⊗ x2] =
K∑

h=1

πhE[x1|h]⊗ E[x2|h] =
K∑

h=1

πh µ1,h ⊗ µ2,h

P3 := E[x1 ⊗ x2 ⊗ x3] =
K∑

h=1

πh µ1,h ⊗ µ2,h ⊗ µ3,h

So, P2 = M1diag(π)M2 and P3,i = M1diag(M3(i , :))diag(π)M2.
And, P3,iP

−1
2 = M1diag(M3(i , :))M−1

1 , which is an eigenvalue
decomposition (assuming invertibility).
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−1
2 = M1diag(M3(i , :))M−1

1 , which is an eigenvalue
decomposition (assuming invertibility).

This is from Anandkumar et al. 2012, COLT paper. There are
statistically more efficient ways now. (Using all three slices instead of
one. Anandkumar et al. 2014, to appear in JMLR)
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Outline
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My background
My research

2 Paper 1: Estimating Latent Variable Graphical Models using Moments
and Likelihoods

Introduction
Intro to method of moments for LVMs
The paper

3 Second Paper, The Visual Microphone: Passive Recovery of Sound from
Video

Introduction, The problem setup
Processing step
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Good, but what about your qual paper?

The paper is about generalizing method of moments idea to general
graph structures.

For example,

h1,n h2,n

x1,n x2,n x3,n x4,n

n = 1 . . .N

h1 ∼ Discrete(π)

h2|h1 ∼ Discrete(A(:, h1))

x1|h1 ∼ N (µ1,h1 ,Σ1)

x2|h1 ∼ N (µ2,h1 ,Σ2)

x3|h2 ∼ N (µ3,h2 ,Σ3)

x4|h2 ∼ N (µ4,h2 ,Σ3)

Now, can we learn A, µ1, µ2, µ3, µ4 using moments?
Not straightforwardly with original work. But this paper says,

Yes, we can!
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Paper 1: Key Idea
Learning conditional moments and hidden marginals separately

h1,n h2,n

x1,n x2,n x3,n x4,n

n = 1 . . .N

I First estimate the conditional
moments E[xi |hk ].

I Then obtaining the hidden
potential p(h2|h1) is easy.

The pipeline:
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Part 1: Estimating the conditional moments

h1,n h2,n

x1,n x2,n x3,n x4,n

n = 1 . . .N

Notice, h1 has three
conditionally independent
"views". Thus, we can estimate
E[x1|h1], E[x2|h1] and E[x3|h1].

h2 has x2, x3, x4. So, E[x2|h2],
E[x3|h2] and E[x4|h2] are
available.

E[x1 ⊗ x2 ⊗ x3] =
∑
h1

∑
h2

p(h1)p(h2|h1) E[x1|h1]E[x2|h1]E[x3|h2]

=
∑
h1

p(h1) E[x1|h1]E[x2|h1]

∑
h2

p(h2|h1)E[x3|h2, h1]


=
∑
h1

p(h1) E[x1|h1]E[x2|h1]E[x3|h1]→ Right form for MoM!
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Part 2: Estimating the hidden potentials

h1,n h2,n

x1,n x2,n x3,n x4,n

n = 1 . . .N

Given E[x2|h1] and E[x3|h2],
estimating p(h2, h1) is child’s
play.

For example,

E[x2 ⊗ x3] =
∑
h1,h2

E[x2|h1]p(h2, h1)E[x3|h2]

=M2SM3

One way to do it is convex optimization.
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Part 2: Estimating Hidden Potentials

If we choose to, minS ‖E[x2 ⊗ x3]−M2SM3‖F , then the solution is
Ŝ = M†2E[x2 ⊗ x3]M†3 . (This is the first thing they do in the paper)

Or better we can do,

min
S

∥∥E[x2 ⊗ x3]−M2SM3
∥∥
F

S ≥ 0

1TS1 = 1

(I use CVX! haha!)

Or even better (so they claim),

max
S

E[log p(x2, x3)]

This is called the “Composite Likelihood”
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A simulation for computational and statistical efficiency
Statistical and computational efficiencies of the two stage estimation
and EM for HMM with Gaussian observations. (K = 5)
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Conditions for recoverability of a Directed Graphical Model

We need to be able to recover all conditional expectations:
I Every hidden node must be a “bottleneck” in the worst case.
I There must be at least three cond. indep. variables for a node to be a

bottleneck.
I The conditional expectation matrices have to have full column rank.

Examples:

h1 h2

x1 x2 x3 x4

PASS

h1 h2 h3

x1 x2 x3 x4

FAIL

Y. Cem Sübakan (UIUC CS) YCS Qual September 18, 2014 26 / 40



Conditions for recoverability of a Directed Graphical Model

We need to be able to recover all conditional expectations:
I Every hidden node must be a “bottleneck” in the worst case.
I There must be at least three cond. indep. variables for a node to be a

bottleneck.
I The conditional expectation matrices have to have full column rank.

Examples:

h1 h2

x1 x2 x3 x4

PASS

h1 h2 h3

x1 x2 x3 x4

FAIL

Y. Cem Sübakan (UIUC CS) YCS Qual September 18, 2014 26 / 40



Conditions for recoverability of a Directed Graphical Model

Hidden nodes must possess the “Exclusive Views” property.
I A hidden node has to have at least one conditionally independent

observation on its own to have this property.

If we want to estimate all hidden potentials:

h1 h2

x1 x2 x3 x4

PASS

h3

h1 h2

x1 x2 x3 x4

FAIL
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Part 3: Undirected Graphs (MRFs)
The joint distribution is defined with clique “potentials”.

p(h1:K , x1:J |θ) =
1

Z (θ)

∏
C∈G

exp(θTφ(xC , hC ))

Example: (An image segmentation model)

x1 h1 h2 x2

x3 h3 h4 x4

φ(xC , hC ) = φ1(hi , hN (i)) + φ2(xi , hi )

= θ11[hi=hN (i)] + θ21[hi 6=hN (i)]

+
∑
l ,k

θ3,i ,k1[xi=l ][hi=k]

Z (θ) =

∫ ∏
C∈G

exp(θTφ(xC , hC ))dx1:Jdh1:K

The notorious partition function!
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Part 3: Learning Undirected Graphs

The lower bound on likelihood is:

log p(x1:K |θ) ≥ Ep(x1:J ,h1:K |θ)[log p(x1:J , h1:K |θ)] = L(θ)

Computing p(x1:J , h1:K |θ) is not trivial in general graphs. But
approximations are made in practice. (e.g. Loopy Belief Propagation)
With MoM, we can estimate p(x1:J , h1:K |θ) from data.

L(θ) = θT

(∑
C∈G

E[φ(x1:J , h1:K )]

)
− A(θ)

where, E[φ(x1:J , h1:K )] =
∑

x1:J ,h1:K

p(x1:J , h1:K )φ(x1:J , h1:K )

So, the MoM lower bound is concave w.r.t. θ.
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log p(x1:K |θ) ≥ Ep(x1:J ,h1:K |θ)[log p(x1:J , h1:K |θ)] = L(θ)

Computing p(x1:J , h1:K |θ) is not trivial in general graphs. But
approximations are made in practice. (e.g. Loopy Belief Propagation)
With MoM, we can estimate p(x1:J , h1:K |θ) from data.

L(θ) = θT

(∑
C∈G

E[φ(x1:J , h1:K )]

)
− A(θ)

where, E[φ(x1:J , h1:K )] =
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Conclusions

It’s a good paper, that opens new possibilities for MoM learning.
The moral of the story: MoM and likelihood maximization can be used
synergistically to learn a variety of models.
The story isn’t finished yet: Models like MHMM is not covered.
(where not all variables are bottlenecks.)
Experimental verification is necessary as follow-up work.
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Introduction

The goal: Recovering sound from video.

Sound waves cause minute vibrations on objects. High speed camera
footage of these vibrations are used to reconstruct the sound.

We’ll mostly be interested in “Processing” step, which is somewhat
involved in signal processing/vision.

Y. Cem Sübakan (UIUC CS) YCS Qual September 18, 2014 32 / 40



Introduction

The goal: Recovering sound from video.
Sound waves cause minute vibrations on objects. High speed camera
footage of these vibrations are used to reconstruct the sound.

We’ll mostly be interested in “Processing” step, which is somewhat
involved in signal processing/vision.

Y. Cem Sübakan (UIUC CS) YCS Qual September 18, 2014 32 / 40



Introduction

The goal: Recovering sound from video.
Sound waves cause minute vibrations on objects. High speed camera
footage of these vibrations are used to reconstruct the sound.

We’ll mostly be interested in “Processing” step, which is somewhat
involved in signal processing/vision.

Y. Cem Sübakan (UIUC CS) YCS Qual September 18, 2014 32 / 40



Outline

1 Me
My background
My research

2 Paper 1: Estimating Latent Variable Graphical Models using Moments
and Likelihoods

Introduction
Intro to method of moments for LVMs
The paper

3 Second Paper, The Visual Microphone: Passive Recovery of Sound from
Video

Introduction, The problem setup
Processing step

Y. Cem Sübakan (UIUC CS) YCS Qual September 18, 2014 33 / 40



Recovering Sound from Video : Local Motion Signal

The first step: A wavelet transform (steerable pyramid representation)
of the video for every frame:

I It is a filter bank consisting of sombrero type of filters with different
orientations and scales.

A similar filter bank, Gabor Wavelets (real parts) for several scales (r):
and orientations θ:

In 1D, it’s of form f (x ;σ2, ω) = N (x , 0, σ2)e j2πωx
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Recovering Sound from Video : Local Motion Signal

After wavelet transform, we have:

W(V ) = A(r , θ, x , y , t)︸ ︷︷ ︸
amplitude

e j

phase︷ ︸︸ ︷
ψ(r , θ, x , y , t)

This is a phasor representation, A(.) is the amplitude and ψ(.) is the
phase.

Then phase variations wrt. to a reference frame t0 is computed
ψv (., t) = ψ(., t)− ψ(., t0).

I For small motions these variations

This is the local motion signal.
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Recovering Sound from Video : Global Motion Signal

The output of this stage is the reconstruction!.
First average over the spatial coordinates:

Φ(r , θ, t) =
∑
x ,y

A(r , θ, x , y , t)2ψv (r , θ, x , y , t)

Then align the signals:

ti = argmax
ti

Φ(r0, θ0, t)TΦ(ri , θi , t − ti )

The reconstructed signal is:

ŝ(t) =
∑
i

Φ(ri , θi , t − ti )

Y. Cem Sübakan (UIUC CS) YCS Qual September 18, 2014 36 / 40



Recovering Sound from Video : Global Motion Signal

The output of this stage is the reconstruction!.
First average over the spatial coordinates:

Φ(r , θ, t) =
∑
x ,y

A(r , θ, x , y , t)2ψv (r , θ, x , y , t)

Then align the signals:

ti = argmax
ti

Φ(r0, θ0, t)TΦ(ri , θi , t − ti )

The reconstructed signal is:
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Say we have the following video..

(Loading Video...)

Can we reconstruct a sound?
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peaks.avi
Media File (video/avi)



Yes we can!
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each dimension with
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θ, ε ∼ N (0, 0, 1)
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A glance at their experiments

Objects behave like low-pass filters. It’s harder to obtain high
frequencies, as one would expect.
For speech, their method generally works worse than an active method.
They claim that unintelligible sound may also be useful for surveillance
type applications.
They have the vibration mode estimation application also.
Limitations: Sampling rate / Magnification
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Conclusions

A (very) good paper with lots of experiments.
I would have liked to see some theoretical justification for the
processing step.
Experiments are really good, and they provide several applications,
and some analysis. It’s definitely a well studied, exciting (even for me)
paper.
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