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Problem Statement

The goal is to assign "similar" sequences to same classes.
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Problem Statement

It is not a trivial task. Variability within each class.
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Problem Statement

Data in real life applications is even more challenging.

So, we make a computer program "learn" how to classify sequences.
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Goal of this thesis

The goal of this thesis is to understand and develop learning algorithms
for supervised and unsupervised time series classification models.
We propose two novel learning algorithms for mixture of Markov
models and mixture of HMMs .
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Achievements

A new spectral learning algorithm for learning mixture of Markov
models

I Based on learning mixture of Dirichlet distributions

A new spectral learning based algorithm for learning mixture of HMMs
I Faster compared to the conventional EM approach
I Possible to generalize to infinite mixture of HMMs

Survey of Discriminative versions of Markov models and HMMs
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Outline

1 Learning a Latent Variable Model with ML
Expectation Maximization (EM) algorithm description, drawbacks

2 Method of Moments based learning algorithms
Method of Moments vs ML
Spectral Learning for LVMs

3 Spectral Learning for Mixture of Markov models
Derivation of an algorithm with existing methods
Derivation of a superior learning scheme
Results

4 Spectral Learning based algorithm for Mixture of HMMs
For Finite mixtures
For Infinite mixtures
Results

5 Discriminative vs Generative Time Series Models
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EM for latent variable models

The optimization problem to train a latent variable model:

θ∗ = argmax
θ

p(x |θ)

= argmax
θ

∑
h

p(x , h|θ)

where, x are the observations (sequences), h are the latent variables
(cluster indicators/latent state sequences), θ is the model parameter.
The summation is over all possible combinations of h. An intractable
summation in practice.
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EM for latent variable models
The idea is to have a lower bound on log p(x |θ), which is easier to
maximize.

log p(x |θ) = log
∑
h

p(x , h|θ) = log
∑
h

p(x , h|θ)
q(h)

q(h)

= log
∑
h

Eq(h)

[p(x , h|θ)

q(h)

]
Then, using Jensen’s inequality;

log
∑
h

Eq(h)

[p(x , h|θ)

q(h)

]
≥Eq(h)

[
log

p(x , h|θ)

q(h)

]
log p(x |θ) ≥Eq(h)[log p(x , h|θ)]− Eq(h)[log q(h)]︸ ︷︷ ︸

Q(θ):=

Q(θ) is easier to maximize than p(x |θ).
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EM for latent variable models

EM Algorithm
Initialize θ then, at each iteration;
E-Step: Compute the lower bound Q(θ) using q(h) = p(h|x , θ)
M-Step: θ∗ = argmaxθQ(θ)

Let us consider the following toy example:
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EM for latent variable models

EM Algorithm
Initialize θ then, at each iteration;
E-Step: Compute the lower bound Q(θ) using q(h) = p(h|x , θ)
M-Step: θ∗ = argmaxθQ(θ)
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EM for latent variable models

EM Algorithm
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EM for latent variable models

We see that EM is an iterative algorithm, sensitive to initialization.

In next section, we introduce an alternative local optima free,
non-iterative learning method for LVMs, based on method of moments.
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Method of Moments vs ML

Suppose we have the i.i.d. data x1:N , generated from G(x ; a, b).

A maximum likelihood estimator for a and b would require to solve,

log(a)− ψ(a) = log

(
1
N

N∑
n=1

xn

)
− 1

N

N∑
n=1

log(xn)

to find an estimate â. Then,

b̂ =
1

âN

N∑
n=1

xn

So, a ML estimate for G(a, b) would require to use an iterative
method.
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Method of Moments vs ML

Alternatively, we can use method of moments to estimate a and b:

M1 := E[x ] =ab

M2 := E[x2] =ab2 + a2b2

Then,

â =
M2

1
M2 −M2

1

b̂ =
M2 −M2

1
M1
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Method of Moments vs ML

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

b

a
N = 10

 

 

True parameters

MoMoment estimate

ML estimate

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

b

a

N = 40

 

 

True parameters

MoMoment estimate

ML estimate

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

b

a

N = 100

 

 

True parameters

MoMoment estimate

ML estimate

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

b

a

N = 200

 

 

True parameters

MoMoment estimate

ML estimate

Y. Cem Sübakan (Boğaziçi University) M.Sc. Thesis Defense 25.06.2013 16 / 54



Method of Moments vs ML

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

b

a
N = 10

 

 

True parameters

MoMoment estimate

ML estimate

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

b

a

N = 40

 

 

True parameters

MoMoment estimate

ML estimate

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

b

a

N = 100

 

 

True parameters

MoMoment estimate

ML estimate

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

b

a

N = 200

 

 

True parameters

MoMoment estimate

ML estimate

Y. Cem Sübakan (Boğaziçi University) M.Sc. Thesis Defense 25.06.2013 16 / 54



Method of Moments vs ML

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

b

a
N = 10

 

 

True parameters

MoMoment estimate

ML estimate

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

b

a

N = 40

 

 

True parameters

MoMoment estimate

ML estimate

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

b

a

N = 100

 

 

True parameters

MoMoment estimate

ML estimate

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

b

a

N = 200

 

 

True parameters

MoMoment estimate

ML estimate

Y. Cem Sübakan (Boğaziçi University) M.Sc. Thesis Defense 25.06.2013 16 / 54



Method of Moments vs ML

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

b

a
N = 10

 

 

True parameters

MoMoment estimate

ML estimate

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

b

a

N = 40

 

 

True parameters

MoMoment estimate

ML estimate

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

b

a

N = 100

 

 

True parameters

MoMoment estimate

ML estimate

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

b

a

N = 200

 

 

True parameters

MoMoment estimate

ML estimate

Y. Cem Sübakan (Boğaziçi University) M.Sc. Thesis Defense 25.06.2013 16 / 54



Method of Moments vs ML

Method of Moments yield simpler solutions than ML.

Method of Moments solutions are not iterative. ML solutions are.
ML solutions are more efficient, guaranteed to return parameter
estimates in feasible range.
ML solutions may get stuck in local maxima, require good
initializations. Method of moments do not.
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Spectral Learning for Latent Variable Models
Spectral learning is an instance of method of moments.
Model parameters are solved from a function of some observable
moments.

Let us consider a simple mixture model:

hn xn O(:, k)

n = 1 . . .N
k = 1 . . .K

hn ∼Discrete(p(hn))

xn|hn ∼p(xn|hn,O(:, hn))

where, x ∈ RL observations,
hn ∈ {1, . . . ,K} cluster indicators,

E[x |h] = O ∈ RL×K model parameters,
e.g. for Poisson, O(i , k) = λi ,k .

Given x1:N , one can use EM to learn O. Alternatively, we can use
spectral learning to learn O, in a non iterative fashion.
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Spectral Learning for Latent Variable Models

hn xn O(:, k)

n = 1 . . .N
k = 1 . . .K

hn ∼Discrete(p(hn))

xn|hn ∼p(xn|hn,O(:, hn))

Given that L ≥ K , and O has K linearly independent columns then,

Bi :=(UTE[x ⊗ x ⊗ xi ]V )(UTE[x ⊗ x ]V )−1

=(UTO)diag(O(i , :))(UTO)−1

where, E[x ⊗ x ] = UΣV T .

Bi can be expressed in terms of observable moments E[x ⊗ x ] and
E[x ⊗ x ⊗ xi ].
So, model parameters can be simply be read from the eigenvectors of
Bi .
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Spectral Learning for Latent Variable Models

Proof:

UTE[x ⊗ x ⊗ xi ]V =UTOdiag(O(i , :))diag(p(h))OTV
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Spectral Learning for Latent Variable Models

This algorithm is based on the work of Anandkumar et al. 2012.

One can also modify this algorithm slightly to learn HMMs.
The general goal is to express the observable moments so that, we
obtain an eigen-decomposition form, from which we can read the
parameters.
This is a fast, and local optima free algorithm to learn LVMs.
However, this scheme requires high order moments to learn a
temporally connected LVM such as mixture of Markov models.
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Mixture of Markov models

hn

x1,n x2,n . . . xTn,n

Ak

k = 1 . . .K

n = 1 . . .N

hn ∼Discrete(p(hn))

xt,n| xt−1,n, hn,A ∼Discrete(A(:, xt−1,n, hn))
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Spectral Learning for Mixture of Markov models

We show that a spectral learning algorithm as in Anandkumar, et al.
2012, requires observable moments up to order five.

We propose an alternative scheme based on hierarchical Bayesian
modeling:

p(Ahn |xn, hn) ∝ p(xn|Ahn , hn)p(Ahn)

= Dirichlet(cn
1,1 + β − 1, cn

1,2 + β − 1, . . . , cn
L,L + β − 1)

Assuming a uniform Dirichlet prior p(Ahn), i.e. taking β = 1, the
posterior of Ahn becomes Dirichlet(cn

1,1, c
n
1,2, . . . , c

n
L,L).

So, we can represent a sequence only via empirical transition counts
matrix sn ∼ Dirichlet(cn

1,1, c
n
1,2, . . . , c

n
L,L) = p(Ahn |xn, hn).

Y. Cem Sübakan (Boğaziçi University) M.Sc. Thesis Defense 25.06.2013 24 / 54



Spectral Learning for Mixture of Markov models

We show that a spectral learning algorithm as in Anandkumar, et al.
2012, requires observable moments up to order five.
We propose an alternative scheme based on hierarchical Bayesian
modeling:

p(Ahn |xn, hn) ∝ p(xn|Ahn , hn)p(Ahn)

= Dirichlet(cn
1,1 + β − 1, cn

1,2 + β − 1, . . . , cn
L,L + β − 1)

Assuming a uniform Dirichlet prior p(Ahn), i.e. taking β = 1, the
posterior of Ahn becomes Dirichlet(cn

1,1, c
n
1,2, . . . , c

n
L,L).

So, we can represent a sequence only via empirical transition counts
matrix sn ∼ Dirichlet(cn

1,1, c
n
1,2, . . . , c

n
L,L) = p(Ahn |xn, hn).

Y. Cem Sübakan (Boğaziçi University) M.Sc. Thesis Defense 25.06.2013 24 / 54



Spectral Learning for Mixture of Markov models

We show that a spectral learning algorithm as in Anandkumar, et al.
2012, requires observable moments up to order five.
We propose an alternative scheme based on hierarchical Bayesian
modeling:

p(Ahn |xn, hn) ∝ p(xn|Ahn , hn)p(Ahn)

= Dirichlet(cn
1,1 + β − 1, cn

1,2 + β − 1, . . . , cn
L,L + β − 1)

Assuming a uniform Dirichlet prior p(Ahn), i.e. taking β = 1, the
posterior of Ahn becomes Dirichlet(cn

1,1, c
n
1,2, . . . , c

n
L,L).

So, we can represent a sequence only via empirical transition counts
matrix sn ∼ Dirichlet(cn

1,1, c
n
1,2, . . . , c

n
L,L) = p(Ahn |xn, hn).

Y. Cem Sübakan (Boğaziçi University) M.Sc. Thesis Defense 25.06.2013 24 / 54



Spectral Learning for Mixture of Markov models

We show that a spectral learning algorithm as in Anandkumar, et al.
2012, requires observable moments up to order five.
We propose an alternative scheme based on hierarchical Bayesian
modeling:

p(Ahn |xn, hn) ∝ p(xn|Ahn , hn)p(Ahn)

= Dirichlet(cn
1,1 + β − 1, cn

1,2 + β − 1, . . . , cn
L,L + β − 1)

Assuming a uniform Dirichlet prior p(Ahn), i.e. taking β = 1, the
posterior of Ahn becomes Dirichlet(cn

1,1, c
n
1,2, . . . , c

n
L,L).

So, we can represent a sequence only via empirical transition counts
matrix sn ∼ Dirichlet(cn

1,1, c
n
1,2, . . . , c

n
L,L) = p(Ahn |xn, hn).

Y. Cem Sübakan (Boğaziçi University) M.Sc. Thesis Defense 25.06.2013 24 / 54



Spectral Learning for Mixture of Markov models - Dirichlet
distribution
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Spectral Learning for Mixture of Markov models - Dirichlet
posterior
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Spectral Learning for Mixture of Dirichlet Distributions

hn xn α(:, k)

n = 1 . . .N
k = 1 . . .K

hn ∼Discrete(p(hn))

xn|hn, α ∼Dirichlet(α(1, hn), . . . , α(K , hn))

Note that E[sn,i |hn = k] = α(i , k)/α0.
So, we can estimate α, up to a scaling factor α0 via spectral learning.
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Spectral Learning for Mixture of Markov models

Input: Sequences x1:N
Output: Clustering assignments ĥ1:N

1. Extract the sufficient statistics sn from xn,∀n ∈ {1, . . . ,N}
2. Compute empirical moment estimates for E[s ⊗ s] and E[s ⊗ s ⊗ s].
Compute U and V such that E[s ⊗ s] = UΣV T .
3. Estimate α by doing eigen-decomposition of Bi .
4. ∀n ∈ {1, . . .N}, ĥn = argmaxk Dirichlet(sn, α(:, k)).
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Results - Synthetic Data
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On 100 synthetic datasets, each consisting of 60 sequences, average
clustering accuracies for varying sequence lengths.
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Results - Network Traffic Data

Exploratory data analysis on network traffic data consisting of Skype
and Bit-torrent
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Results - Network Traffic Data

Effect of clustering in training

Algorithm Classification Accuracy
No Clustering 63.41%

Mixture of Dirichlet (Spectral) 84.85%
Mixture of Dirichlet (EM) 79.39%
Mixture of Markov (EM) 83.51%
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Results - Finding number of Clusters
We can also estimate the number of clusters:

E[sn ⊗ sn] = αdiag(p(h))αT =
K∑

k=1

p(h = k)α(:, k)α(:, k)T

By looking at the jump σk+1/σk of E[sn ⊗ sn], we can estimate K .
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Figure: Network Traffic Data.
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Figure: Synthetic Data.
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Results - Finding number of Clusters

Finding number of clusters on motion capture data.
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Conclusions - Spectral Learning for Mixture of Markov
models

Spectral learning of mixture of Dirichlet disributions yield a simple and
effective algorithm.
On synthetic data, it outperforms its rivals.
It is also possible to automatically determine the number clusters.
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Mixture of HMMs

Ak

r1,n r2,n . . . rTn,n

hn

x1,n x2,n . . . xTn,n

Ok

k = 1 . . .K

k = 1 . . .K

n = 1 . . .N

hn ∼Discrete(p(hn))

rt,n|rt−1,n, hn ∼Discrete(A(:, rt−1,n, hn))

xt,n|rt,n, hn ∼p(xt,n| O(:, rt,n, hn))
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Spectral Learning based algorithm for Mixture of HMMs

An EM algorithm for mixture of HMMs is expensive. Requires
forward-backward message passing for each sequence in each EM
iteration.
We propose to replace the parameter estimation step with spectral
learning.
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Cheaper Alternative Algorithm for HMM Mixture learning

Randomly initialize r1:N
At each iteration,
for k = 1→ K do
θk ← EMHMM({xn|∀n, hn = k})

end for
for n = 1→ N do

hn = argmaxk p(xn|θk)
end for

With spectral learning, required computations for parameter estimation
step become K low-rank SVDs and K eigen-decompositions, which is
substantially cheaper compared to N × K forward-backward.
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Results on mocap data

Results obtained on Motion capture data. We input the temporal difference
of 3D coordinates of 32 markers on human body. In this case, we used 20
sequences. We restarted the algorithm 10 times with random r1:N , and
recorded the results:

Average Max Iteration Average
Success(%) Success(%) time* (s) convergence

EM1 70 100 7.5 3.2
EM2 73 100 12 2.9
Spectral 76 100 3.1 3.8
*PC: 3.33 GHz dual core CPU, 4 GB RAM, Software: MATLAB
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Learning Infinite mixture of HMMs

In Finite mixtures, we fix the number of clusters K a-priori.
In infinite mixtures, K is automatically learned.

Learning an infinite mixture would involve an intractable integral over
HMM parameters. We approximate these integrals using spectral
learning.
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Learning Infinite mixture of HMMs

Learning an infinite Mixture of HMMs would require an integral over HMM
parameters θ = (O,A). (Collapsed Gibbs sampler)

For existing clusters:

p(hn = k , k ≤ K |h−n
1:N , x1:N)

=
N−n

k
N + α− 1

∫
p(xn|θ)p(θ|{xl : l 6= n, hl = k})dθ

To open a new cluster:

p(hn = k + 1|h−n
1:N , x1:N)

=
α

N + α− 1

∫
p(xn|θ)p(θ)dθ
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p(hn = k + 1|h−n
1:N , x1:N)

=
α

N + α− 1

∫
p(xn|θ)p(θ)dθ
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Learning Infinite Mixture of HMMs

One can use Gibbs sampling with auxiliary variable method of Neal
(2000). However, this would require sampling from the prior to
approximate the marginal likelihood. Large number of samples, slow.
We suggest to use spectral learning for learning IM-HMMs.
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IMM - Spectral learning

Assuming that the sequences are long enough, we make the following
approximation;∫

p(xn|θ)p(θ|{xl : l 6= n, hl = k})dθ ≈ p(xn|θspectral
k )

We compute the marginal likelihood of each sequence offline, and then
use them in each iteration.
By modifying the spectral algorithm for finite mixtures, we obtain a
learning algorithm for infinite mixtures of HMMs:
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Cheaper Alternative Algorithm for HMM Mixture learning

Randomly initialize h1:N
At each iteration,
for k = 1→ K do
θk ← SpectralHMM({xn|∀n, hn = k})

end for
for n = 1→ N do

hn = argmaxk p(xn|θk)
end for

Marginal likelihoods are computed before starting the algorithm p(xn)

Note that this algorithm is the analogue of the infinite version of
k-means, Dirichlet Process Means algorithm of Kulis and Jordan.
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Results - Human Action Classification

We use KTH human action database. 6 classes (boxing, hand waving,
hand clapping, walking, jogging, running), 100 sequences: 64
sequences for training 36 for testing.
We do clustering in training phase to increase the clustering accuracy,
as data instances in same class tend to show variability.
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Results - Human Action Classification

Algorithm Classification Accuracy
No Clustering 70.1%

Spectral 74.1%
Gibbs Sampling 74.0%
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Results - MoCap Data
A dataset 44 sequences with two different walking characteristics and
running. Algorithm automatically determines K = 3. In 9 seconds
algorithm converged.
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Figure: Cluster representatives from Run#9 vs Walk#7#35 sequences. Notice
that clusters have distinct characteristics.

It took 9 seconds for the algorithm to converge.
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Conclusions - Spectral Learning for Mixture of HMMs

We have proposed a simple, fast and effective algorithm for learning
mixture of HMMs.
Algorithm is competitive with more conventional Gibbs sampling
method.
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Discriminative vs Generative Models

Given the training set (xn, hn)N
n=1

Training a Generative Model

θ∗ = argmax
θ

∏
n

p(xn| θ, hn)

Training a Discriminative Model

θ∗ = argmax
θ

∏
n

p(hn|xn, θ)
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Discriminative vs Generative Models
Logistic Regression vs Naive Bayes Classifiers (with Isotropic Gaussian
observations)
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Generative Models model the data distribution p(x |h).
Discriminative Models model the class labels p(h|x).

Y. Cem Sübakan (Boğaziçi University) M.Sc. Thesis Defense 25.06.2013 51 / 54



Discriminative and Generative Time Series Models

HMM, Markov Model and their mixtures are all generative models.

Deriving a discriminative model corresponding to a LVM amounts to
converting the model into an undirected graph. (Defining an energy
function)
For Discriminative Markov model:

ψ(xn, hn; θk) =
Tn∑
t=1

K∑
k=1

L∑
l1=1

L∑
l2=1

[hn = k][l1 = xt ][l2 = xt−1]θk,l1,l2

The training is:

θ∗1:K = argmax
θ1:K

N∑
n=1

log
exp(ψ(xn, hn; θk))∑K

hn=1 exp(ψ(xn, hn; θk))

Note that we treat data x as an input.
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Result
We investigate amount of training data vs classification accuracy for
generative and discriminative Markov model
We use the synthetic control chart dataset from UCI machine learning
repository. 6 classes 100 sequences for each class. 70 sequence for
training 30 sequence for test.
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Conclusions and Future Work

We have proposed two novel algorithms for time series clustering.
We have investigated generative and discriminative classification of
time series.
As future work, we plan on investigating the hierarchical Bayesian
viewpoint for deriving spectral learning algorithms for more
complicated time series models.
A complete spectral learning algorithm for mixture of HMMs based on
constrained optimization.

Y. Cem Sübakan (Boğaziçi University) M.Sc. Thesis Defense 25.06.2013 54 / 54


	Learning a Latent Variable Model with ML
	Expectation Maximization (EM) algorithm description, drawbacks

	Method of Moments based learning algorithms
	Method of Moments vs ML
	Spectral Learning for LVMs

	Spectral Learning for Mixture of Markov models
	Derivation of an algorithm with existing methods
	Derivation of a superior learning scheme
	Results

	Spectral Learning based algorithm for Mixture of HMMs
	For Finite mixtures
	For Infinite mixtures
	Results

	Discriminative vs Generative Time Series Models

