
c© 2018 Y. Cem Subakan

GENERATIVE MODELING OF SEQUENTIAL DATA

BY

Y. CEM SUBAKAN

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Doctoral Committee:

Associate Professor Paris Smaragdis, Chair
Professor David Forsyth,
Professor Mark Hasegawa-Johnson,
Dr. Yunus Saatci, Uber AI LABS

ABSTRACT

In this thesis, we investigate various approaches for generative modeling, with a special

emphasis on sequential data. Namely, we develop methodologies to deal with issues regarding

representation (modeling choices), learning paradigm (e.g. maximum likelihood, method of

moments, adversarial training), and optimization.

For the representation aspect, we make the following contributions:

• We argue that using a multi-modal latent representation (unlike popular methods such

as variational autoencoders or generative adversarial networks) significantly enhances

the generative model learning performance, as evidenced by the experiments we con-

duct on handwritten digit dataset (MNIST) and celebrity faces dataset (CELEB-A).

• We prove that the standard factorial Hidden Markov model defined in the literature is

not statistically identifiable. We propose two alternative identifiable models, and show

their validity on unsupervised source separation examples.

• We experimentally show that using a convolutional neural network architecture pro-

vides performance boost over time agnostic methods such as non-negative matrix fac-

torization, and auto-encoders.

• We experimentally show that using a recurrent neural network with a diagonal recur-

rent matrix increases the convergence speed and final accuracy of the model in most

cases in a symbolic music modeling task.

For the learning paradigm aspect, we make the following contributions:

• We propose a method of moment based parameter learning framework for Hidden

Markov Models (HMMs) with special transition structures such as mixture of HMMs,

switching HMMs and HMMs with mixture emissions.

• We propose a new generative model learning method which does approximate maxi-

mum likelihood parameter estimation for implicit generative models.

• We argue that using an implicit generative model for audio source separation increases

the performance over models which specify a cost function, such as NMF or autoen-

coders trained via maximum likelihood. We show performance improvement in speech

mixtures created from the TIMIT dataset.

ii

For the optimization aspect, we make the following contributions:

• We show that using the method of moment framework we propose in this thesis boosts

the model performance when used as an initialization scheme for the expectation max-

imization algorithm.

• We propose new optimization algorithms for identifiable alternatives to Factorial HMM.

• We propose a two-step optimization algorithm for learning implicit generative models

which efficiently learns multi-modal latent representations.

iii

To all kindred spirits

iv

ACKNOWLEDGMENTS

Before anyone else the credit of course goes to my advisor Paris Smaragdis. As my dear

labmate Johannes Traa once wrote in his thesis acknowledgements page, Paris really is a

real kick-ass advisor (in the best way). Thank you Paris for tolerating all my crazy actions,

giving me the freedom to do whatever I want to do, and saving me from the downward slope

I was in during my 3rd year.

Also, Bulent hoca and Taylan hoca for all their support during my masters and undergrad.

They were quite instrumental in motivating me to pursue a career in research.

I also want to thank Sanmi Koyejo for the collaboration which made Chapter 4 of this

thesis possible.

Johannes Traa, the name I already mentioned, has been central in this thesis. He was

my co-author for the first half of my Ph.D. (method of moments stuff and the first factorial

hmm paper). But much more importantly he has been a great friend from whom I believe

I learned a lot.

Minje Kim, who is now a serious college professor also helped me a lot in gaining self

confidence. We never got to collaborate, but maybe someday.

I would like to thank Yves Petinot for being a kindred spirit.

My lab-mate Shrikant Venkataramani was also instrumental in my recovery in my fourth

year. We wrote the convolutive neural network paper together in the dining hall of Uber’s

headquaters, and got a best paper award for it. Quite awesome stuff.

I also want to thank my friend Sertan Alkan for being a real friend throughout the years.

I also want to thank my labmates in office 3332 for tolerating all my assholish and territorial

behavior.

Also thank you father and mother for all the support in all aspects, and allowing me to

be and do whatever I want.

(I still don’t have a significant other so I pass on that one.)

v

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Generative Modeling . 1
1.2 Sequence Modeling . 6

CHAPTER 2 METHOD OF MOMENTS LEARNING FOR HMMS WITH SPE-
CIAL TRANSITION STRUCTURES . 16
2.1 Method of Moments . 16
2.2 Method of Moments for Structured HMMs 19
2.3 High-Level Impressions on Method of Moments (MoM) for LVMs 35

CHAPTER 3 IDENTIFIABLE LEARNING FOR FACTORIAL HIDDEN MARKOV
MODELS . 37
3.1 Identifiability in Standard Factorial Model 38
3.2 Shared Component Factorial Model (SC-FM) 40
3.3 Revealing Factorial Model . 47

CHAPTER 4 LEARNING THE BASE DISTRIBUTION IN IMPLICIT GEN-
ERATIVE MODELS . 54
4.1 Generative Model Learning . 55
4.2 Learning in Implicit Generative Models . 58
4.3 Experiments . 62

CHAPTER 5 GENERATIVE SEQUENCE MODELING IN AUDIO 72
5.1 Using GANs in Generative Source Separation 72
5.2 Convolutive Neural Network Models for Audio Source Separation 80
5.3 Improving Recurrent Neural Networks on Symbolic Music Modeling 89

CHAPTER 6 CONCLUSIONS . 99
6.1 Concluding Thoughts and Potential Followup Work 100

REFERENCES . 101

vi

CHAPTER 1: INTRODUCTION

1.1 GENERATIVE MODELING

Generative modeling is a statistical modeling approach where one learns a distribution

over a given data by assuming a process from which the data is generated. Applications

can range from modeling the price distribution for a given stock, to recognizing handwritten

digits, human faces, from de-noising speech signals to generating random bedroom pictures.

In general, given a dataset whose underlying distribution is described by pdata(x), the goal

in generative model learning is to fit a model with probability density pmodel(x|θ), such that

d(pdata(x)‖pmodel(x|θ)) is minimized, where d(.) is some divergence measure, and θ denotes

the model parameters.

To see generative modeling in action, let us consider the dataset [1] for weight and height

of members of the !Kung tribe in Africa [2]. Let us first start by modeling the dataset for

the adult members who are over the age of 20. We assume the following generative process:

xn ∼ N (µ,Σ), ∀n ∈ {1, . . . , N},

where xn ∈ R2 denotes the data item with index n, N (µ,Σ) denotes a multivariate Gaus-

sian distribution with mean µ ∈ R2, and covariance matrix Σ ∈ R2×2 (Therefore the model

parameters are θ = {µ,Σ}). We see in the left panel of Figure 1.1, that this is a reason-

able assumption since the data points roughly form an ellipse. We learn the distribution

parameters by maximizing the following objective:

max
θ

N∑
n=1

log pmodel(xn|θ) = max
µ,Σ

N∑
n=1

logN (xn;µ,Σ), (1.1)

which is the maximum likelihood objective for this model. In the left panel of Figure 1.1,

we see that the samples drawn from the learned distribution closely follow the original data

items. Now, let us consider a slightly more complicated situation where we model children

and adults together. We see from the left panel of Figure 1.2 that this dataset now exhibits

a bi-modal behavior, and therefore we can not simply use a multivariate Gaussian. We can

instead devise the following generative process which emulates the bi-modal behavior in the

1

Figure 1.1: Learning a joint distribution over weight and height for the members over the
age of 20 of the !Kung tribe in Africa. (left) Real Data and the covariance ellipsoid for the
learned distribution. (right) Real data and samples drawn from the learned distribution.

dataset:

hn ∼ BE(π),

xn|hn ∼ N (µhn ,Σhn).

Note that the above process describes our assumption on how an observed data item is

generated: We first sample the indicator variable hn ∈ {0, 1}, which selects the output

distribution. Then once the indicator variable is given, we sample from the selected output

distribution. The parameters θ = {µ1,Σ1, µ2,Σ2}, are again learned via maximum likelihood,

usually with the EM algorithm [3, 4]. We see in Figure 1.2 that using this generative model

enables us to generate samples which closely follow the original data distribution pdata(x).

When the dataset comprises of scalars, or of low dimensional (2-3 dimensional) vectors and

follow a unimodal distribution as in Figure 1.1, we therefore see that one can use a simple

density model such as the multivariate Gaussian. And when the data exhibits a multi-

modal behavior as in Figure 1.2 we can use linear latent variable models such as GMMs (the

model described above). However, the modern goals in generative model learning revolve

around learning distributions over more complicated data such as natural images, which are

typically high dimensional and multi-modal in nature, for which linear models (even though

multi-modal) fall short. And, if we are modeling data with temporal structure, such as audio

or text, we need to model the temporal structure in the data.

2

Figure 1.2: Learning a joint distribution over weight and height for the adult and child
members of !Kung tribe in Africa. (left) Real Data and the covariance ellipsoid for the
learned distribution. (right) Real data and samples from the learned distribution.

To give a concrete example, we consider learning a distribution over handwritten digit

images from the MNIST dataset [5], where each digit image is in grayscale and of size 28×28

(therefore 784 dimensional vectors). In Figure 1.3, we show samples from the dataset, along

with artificial samples generated using models with various complexity. In this example we

see that there is a clear correlation between the model complexity and the quality of the

generated samples: We see that using a multivariate Gaussian with a diagonal covariance

matrix is only able to learn the region on which the image have non-zero values, but is

unable to capture the digit shapes. Using a full covariance matrix enables the model to get

the rough shapes. Using a GMM helps, but the generated samples still contain artifacts. We

see that using the non-linear model suggested in Chapter 4, we get much clearer samples.

The proposed model uses both latent variable modeling and non-linear neural networks

which have been extremely popular in recent years.

Overall, in my view training a successful generative model amounts to dealing with the

following issues:

• Representation: This item is concerned with how we model the generative process.

For instance, in our example for modeling the height and weight of the !Kung tribe,

and in a more complicated problem involving learning a distribution over hand written

digits, we have seen that the model specification played a crucial role. Namely, in the

case where we wanted to model the distribution jointly for adults and children, we

3

Example Training Images Diagonal Gaussian Full Gaussian GMM Non-Linear model

Figure 1.3: Learning a distribution over handwritten digits (MNIST dataset - images are of
size 28× 28) with models of increasing complexity. Leftmost figure shows samples from the
training set. Rest of the figures show random samples drawn from the learned models. The
model complexity increase as we go from left to right, and the used models indicated on top
of each image.

have seen that using a latent variable enabled accurate modeling. In the literature

there exists successful generative models which do not use latent variables such as

autoregressive models [6], or models [7, 8] that make use of recurrent neural networks

[9, 10].

Using latent variables adds more flexibility and interpretability, as shown in Figure

1.2, although learning becomes more complicated. A typical generative model that

makes use of latent variables can roughly be generalized with the following generative

process [11]:

h ∼ p(h),

x|h ∼ pforward(x|h, θ),

where h ∈ RK is the latent variable, and can be a discrete or continuous variable.

The observations x ∈ RL are generated conditioned on the latent variable h, and

are drawn from the distribution pforward(x|h, θ) which characterizes the distribution of

the outputs given the latent representation h. The output distribution is typically

parametrized by a deterministic mapping such that pforward(x|h, θ) = pout(x; fθ(h)),

where pout(.) characterizes the output noise and fθ(h) : RK → RL is a deterministic

mapping (typically non-linear). If for instance pout(.) is a Poisson distribution, fθ(h)

predicts the Poisson intensities. Note that the model distribution is defined via the

4

following integral:

pmodel(x|θ) =

∫
pforward(x|h, θ)p(h)dh,

=

∫
pout(x; fθ(h))p(h)dh, (1.2)

which is intractable in general. There exists various approaches to estimate pmodel(x|θ)
in the literature, which brings us to the next issue of choosing the learning paradigm.

The contributions in this thesis for the representation problem are as follows:

– In Chapter 3, we show that the standard factorial HMM model [12, 13], is not

statistically identifiable. We therefore propose alternative identifiable models.

– In Chapter 4, we argue that using a multimodal latent representation is funda-

mental in obtaining accurate generative models.

– In Chapter 5, we show that using convolutional neural network mappings greatly

enhances the source separation performance in source separation.

– In Chapter 5, we also show that using a diagonal recurrent matrix in recurrent

neural networks enhances the algorithm performance on symbolic music predic-

tion.

• Choice of divergence / Learning Paradigm: Arguably, the most common ap-

proach for training a generative model is the maximum likelihood principle. As we

show in Chapter 4, this minimizes the divergence

KL(pdata(x)‖pmodel(x|θ)). In the case where one uses fully observable models such

as autoregressive or recursive models we mentioned above, one can directly obtain

pmodel(x|θ). However, when latent variables are used pmodel(x|θ) is not directly avail-

able. A very common approach is to introduce a lower bound to model likelihood and

iteratively maximize this lower bound which is known as the variational lower bound

or evidence lower bound (ELBO) [14, 4, 15].

A recent, but hugely popular training method known as “Generative Adversarial Net-

works” [16] however, completely drops the maximum likelihood paradigm and instead

trains model parameters by estimating the ratios between model density and the data

density. We specify the inner workings of GANs in Chapter 4.

Another way of training generative models is by moment matching: For linear models

such as HMMs or GMMs, it is possible to convert the parameter estimation problem

into solving a set of equations, which can be reduced into an eigenvalue-eigenvector

5

estimation problem [17, 18, 19]. The advantages include guarantees for converging to

a global optimum, and avoiding the need for multiple restarts.

The contributions in this thesis in terms of learning are as follows:

– In Chapter 2, we propose a method of moments (moment matching) based frame-

work for learning in Hidden Markov Model variants with special transition struc-

tures.

– In Chapter 4, we propose a maximum likelihood based method for learning im-

plicit generative models.

– In Chapter 5, we argue that using GANs in audio modeling enables performance

increase in speech source separation.

• Optimization: Optimization for generative models usually involve optimizing non-

convex loss functions. The gradient based methods, or the EM algorithm [3], usually

tend to get stuck in local optima or get slow near saddle points [20]. Our contributions

on this front are as follows:

– In Chapter 2, we show that the proposed method of moments based framework

can be used as an initialization scheme for the EM algorithm, to boost accuracy

and increase the speed of the whole optimization procedure.

– In Chapter 3, we propose a new learning algorithm for Factorial HMMs [21].

– In Chapter 4, we propose a two step optimization algorithm which maximizes an

approximate maximum likelihood objective.

In this thesis, we are particularly interested in learning distributions over sequential data.

We therefore give an overview of existing latent variable and neural network approaches for

modeling sequential data in the next section.

1.2 SEQUENCE MODELING

Many machine learning problems involve sequence data. Examples include sequence clas-

sification, sequence clustering, sequence prediction (e.g. language modeling, market predic-

tion) sequence to sequence mapping (e.g. machine translation), non-sequence to sequence

mapping (e.g. image captioning), sequence segmentation, de-noising, source separation, and

many more.

6

In highest level, sequence models can be classified according to whether the model uses

latent variables or not. Latent variables are a tool to model uncertainty and are extremely

helpful in modeling complex stochastic dependencies. However, one does not always need

to use latent variables, and in recent years we have seen successful application of neural

networks (which are fully observable models) in many domains (e.g. speech [22], vision

[23], natural language processing [24, 25]). Both approaches are valid and common place in

machine learning.

In the rest of this introductory section, we give brief introductions into latent variable

sequence models and observable sequence models. We describe latent variable sequence

models via examples, and when we come to the relevant models we specify/highlight our

related paper.

1.2.1 Latent Variable Sequence Modeling

Latent Variable sequence models assume that observations are conditioned on an under-

lying hidden (latent) random process. Latent variables enable modeling of complex depen-

dencies and are quite useful for incorporating prior knowledge about the problem at hand.

Few examples for latent variable sequence models are given below:

• Hidden Markov Model/Linear Dynamical System: In Hidden Markov Models

(HMMs) [26] and Linear Dynamical Systems (LDS), is it assumed that the underlying

process is a Markov process. The observations are conditioned directly on this Markov

process. The generative model for a given sequence x1:T is therefore constructed as

follows:

ht|ht−1 ∼ p(ht|ht−1)

xt|ht ∼ p(xt|ht)

In an HMM, the underlying process is discrete. Therefore the conditional state distri-

bution p(ht|ht−1) is a discrete distribution. In contrast, in Linear Dynamical Systems

the underlying process is real valued, and p(ht|ht−1) is a Gaussian distribution. The

emission distribution p(xt|ht) depends on the application at hand, and can be chosen

accordingly. For both models, the corresponding dependency graph is given in Figure

1.4. HMMs are used in a plethora of domains such as speech recognition, hand writing

recognition, human action recognition, and many more [4].

7

h1 h2 . . . hT

x1 x2 . . . xT

Figure 1.4: HMM Dependency graph.

• Left-to-right HMM One other example is an HMM where state transitions can only

happen in one direction. That is, the hidden state can only increase or stay the same

with increasing time index. This implies that the state transition matrix is lower

triangular (or upper triangular depending on whether we use column stochastic or row

stochastic transition matrix). One important variant of Left-to-right HMMs is Bakis

HMM where the state index can only increase by one step. This model is useful in

speech phoneme decoding and genetic base sequence modeling. In [27], we derive

a method of moments based learning algorithm for left-to right and Bakis

HMMs.

• Explicit Duration Model: Although this model is not contained in this thesis,

let us briefly describe it to better illustrate the idea behind using latent variables in

sequence modeling. In HMMs, the state durations are geometrically distributed. In

applications where one has the prior knowledge on the state durations, we might want

to explicitly model this quantity. Explicit Duration Model [28], precisely does this. For

example, in [29] explicit duration model is used for hand gesture recognition, where

the implicit geometric distribution on the state durations in HMMs, might lead to

inaccurate modeling. The generative process is as follows:

dt|dt−1, ht−1 ∼ [dt−1 = 0]Fd(λht−1) + [dt−1 > 0]δ(dt − dt−1 + 1),

ht|ht−1, dt−1 ∼ [dt−1 = 0]Discrete(πht−1) + [dt−1 > 0]δ(ht − ht−1 + 1),

where, dt denotes the remaining duration for the current state at time t, Fd(λht−1) is the

distribution that samples the state durations, and πht−1 is the next state distribution

when the duration counter hits zero.

• Mixture of HMMs: If we would like to cluster sequences while modeling them with

HMMs, we can use mixture of HMMs [30]. The high level generative process can be

8

written as follows:

hn ∼ Discrete(π),

xn ∼ HMMhn(xn),

where the idea is to model a given sequence xn using one of K different HMM clusters.

The cluster of a given sequence is indicated by the latent variable hn. The dependency

graph of mixture of HMMs model is given in Figure 1.5. In [31], we derive a method

of moments based algorithm for mixture of HMMs.

r1,n r2,n . . . rTn,n

hn

x1,n x2,n . . . xTn,n

n = 1 . . . N

Figure 1.5: Dependency graph of a mixture of HMMs model.

• Switching HMMs (SHMM): We can easily construct a sequence segmentation

model by modifying MHMM model above to have the model to switch between HMMs

with a given sequence.

ht|ht−1 ∼ Discrete(πht−1)

rt|rt−1, ht, ht−1 ∼ Discrete(Art−1)[ht = ht−1] + U(1, K)[ht 6= ht−1]

xt|rt, ht ∼ p(xt|rt, ht)

The dependency graph of SHMM is given in Figure 1.6. In [32], we extend our

method of moments for mixture of HMMs, to handle switching HMMs, and

HMMs with mixture emissions (which is related to MHMM and SHMM).

9

h1 h2 . . . hT

r1 r2 . . . rT

x1 x2 . . . xT

Figure 1.6: SHMM dependency graph.

• HMM with mixture observations: We note that an HMM with mixture emissions

is a special case of Switching HMM. We can get an HMM with mixture emissions

(HMM-M), out of an SHMM, if we set the transition matrices to be of the form ρk1
T ,

where ρk is the mixing weights of the mixture that corresponds to the k’th HMM state.

The corresponding generative process is as follows:

ht|ht−1 ∼ Discrete(πht−1)

rt|ht ∼ Discrete(ρrt)

xt|rt, ht ∼ p(xt|rt, ht)

h1 h2 . . . hT

r1 r2 . . . rT

x1 x2 . . . xT

Figure 1.7: The dependency graph for an HMM with mixture emissions.

• Factorial HMMs: In the Factorial HMM model originally proposed in [21] the ob-

served sequence is conditioned on K independent latent chains. Namely, the obser-

vation sequence is assumed to be the sum of the emissions from these K different

latent chains. The goal is to model the mixing of the signal in a cocktail party [33]

type setting: There are K independent speakers, and their voices add up to constitute

what the cocktail party attendee hear. In the model we discuss here, there is only one

10

h11 h12 . . . h1T

x1 x2 . . . xT

h21 h22 . . . h2T

Figure 1.8: Dependency Graph of FHMM for the case K = 2.

observation sequence, and the inferential goal is to find the “sources” that make up

the original signal. The generative process is written as follows:

h1 ∼ Markov(A1, π1)

...

hK ∼ Markov(AK , πK)

x|h1:K =
K∑
k=1

Okhk + ε,

where ε is some Gaussian noise. The corresponding dependency graph for the case

where K = 2 is given in Figure 1.8. As can be guessed from the generative process

above, learning the model parameters for an FHMM is an ill-posed problem. In our

work [34], we prove that even if the true assignments h1:K are given, it is

impossible to identify the emission parameters O1:K. We then propose two

different alternative identifiable factorial models in [34] and [35], and sug-

gest algorithms which recover the parameters under certain assumptions.

• Random Fields: Random fields are graphical models where the overall probability

distribution is defined via local potential functions. The generative version is known

as the Markov Random Field, which was first introduced for image processing [36].

There is also a discriminative version known as “conditional random fields” [37]. The

likelihood function for an HMM analog, implemented as a random field is given in

Equation 1.3.

p(x1:T |θ) =
∑
h1:T

T∏
t=1

exp

(∑
x,y

θx,yψh(x, y) +
∑
i,j

θi,jψx(i, j)

)
(1.3)

11

h1 h2 . . . hT

x1 x2 . . . xT

Figure 1.9: Undirected Graph of a MRF/CRF that is equivalent to an HMM.

If the potential functions are chosen as ψh(x, y) = [ht = x][ht−1 = y], and ψx(i, j) =

[ht = i][xt = j], then this model is equivalent to an Hidden Markov model. But

note that there are other plausible choices for the potential functions, which makes

undirected graphs flexible. Also note that, if some of the hidden variables are given, it

is possible to train the model discriminatively (as mentioned before, this case is usually

called conditional random field (CRF)). The corresponding undirected graph is given

in Figure 1.9. Although we do not study random fields in this thesis, we have them in

this for the sake of completeness.

Overall, latent variable models assume an underlying stochastic structure, and in learning

time the goal is to infer the structure by learning the model parameters. As we will discuss in

Chapters 2, 4, learning in latent variable models in general is problematic as optimizing the

parameters by maximizing the model likelihood requires us to solve a highly non-convex opti-

mization problem. In Chapter 2, we propose a method of moments based framework (which

is applicable on MHMM, SHMM, left-to-right HMM, and HMM with mixture emissions)

which circumvents the non-convex maximum likelihood optimization.

1.2.2 Observable Sequence Modeling

Observable sequence models are function approximations of the underlying process. As

we have seen in Section 1.2.1, latent variable models model the underlying stochasticity.

The observable sequence models do not do this and directly map past observations/features

to current observation’s probability distribution. Namely, the probability of an observation

xt ∈ RL is typically modeled as, p(xt) = fθ(x1:t−1), where fθ : RL×(T−1) is some function

parametrized by θ that maps the past observations to the current observation. A popular

choice these days for the function f is neural networks. We give some examples for observable

sequence models below, and we summarize them in Figure 1.14.

• Markov Models: The basic idea for a Markov model is that given the past observa-

tions, there is a probability for the current observation. Let us consider the case where

12

Latent Variable
Sequence
Models

Dynamical
Sys-

tems/HMMs

Left-to-
Right
HMMs

Mixture
of HMMs

Switching
HMMs

Factorial
HMMs

Explicit
Duration
Models

Random
Fields

MRFsCRFs

Variational
Autoen-

coder
Sequence
Models

VRNN[38]

STORN
[39]

Figure 1.10: Summary of examples for latent variable sequence models given above.

we only look one step into the past, which is known as the first order Markov model.

The probability of the current observation is modeled as p(xt) = Ap(xt−1), where A is

some transition matrix, and θ = {A}. Notice that the transition matrix has to have

columns which sum up to one. An alternative implementation for this model is to have

a “softmax” non-linearity after the matrix multiplication to ensure that the predicted

vector for p(xt) sum up to one, such that p(xt) = Softmax(Axt−1). The dependency

graph for a first order Markov model is given in Figure 1.11.

x̂2 x̂3 x̂4 . . . x̂T+1

x1 x2 x3 . . . xT

Figure 1.11: Dependency graph of a (first order) Markov model.

• Convolutive Models: Convolutive models express the probability of current ob-

servation as a combination of past observations/features. These models are known

13

as “Autoregressive/Moving Average Models” in statistics and “Convolutional Neu-

ral Networks” in machine learning. The functional form looks as follows: p(xt) =

σ(
∑n

t′=1 At−t′xt′), where At is either a vector or a matrix which transforms the cor-

responding observation, and σ(.) is some output-non linearity function, and n is the

number of time steps the model looks back, which is also known as number of filter

taps in digital signal processing. Note that, conventional Autoregressive Moving Aver-

age (ARMA) models are special case of these models. The dependency graph for the

case n = 2 is given in Figure 1.12. We implemented analog of the convolutive

Non-Negative Matrix factorization model [40], in our recent paper [41].

x̂2 x̂3 x̂4 . . . x̂T+1

x1 x2 x3 . . . xT

Figure 1.12: The dependency graph of convolutive sequence models. We use the shorthand
x̂t to denote the estimate for p(xt). Note that n = 2 for this example.

• Recurrent Models: Convolutive networks are usually very powerful, and perform

great. However their drawback is they can only incorporate information from a fixed

number of past observations when predicting for the current observation. Recurrent

models aim to incorporate all past information by recursively defining the model out-

put. Namely, in a usual setup the probability for current output is p(xt) = σ(ht),

where ht = σ(Wht−1 + Uxt). Although in theory this seems heavenly, in practice it is

quite difficult to train recurrent networks in this simple formulation [42]. The famous

LSTM networks [9, 43], or GRU networks [10] alleviate this. The dependency graph

for a general recurrent model is given in Figure 1.13 (Note that the same graph with

arbitrarily long dependencies can be obtained with a convolutive model, but the advan-

tage that comes with recurrent models is the model automatically models arbitrarily

long dependencies without the need to have a bigger model, (unlike the convolutive

models, where the model size increases with number of dependencies that is modeled)).

In our work [44], we propose using a diagonal recurrent matrix (diagonal

W instead of full), and empirically show performance improvement. The

dependency graph is given in Figure 1.13. We also use recurrent models in

audio source separation in our paper [41].

14

x̂2 x̂3 x̂4 . . . x̂T+1

x1 x2 x3 . . . xT

Figure 1.13: The dependency graph for recurrent sequence models.

Observable
Sequence
Models

Recurrent
Neural

Networks

Vanilla
RNNs

LSTM

GRU

Convolutive
Models

ARMA
models

Convolutive
Neural

Networks

Markov
Models

Figure 1.14: Summary picture of the examples given for observable sequence models.

Finally, we would like to note here that in the last few years, there has been works

which incorporates stochasticity via latent variables in neural networks, which is known as

“Variational Autoencoders” (VAE). Namely, the marginal distribution for the observations

x is modeled as:

p(x) =

∫
p(x|fθ(h))p(h) dh,

where h is a latent variable, and fθ(h), is a complicated mapping which renders the above

integral intractable. In [15], the authors suggested using a neural network to model an

approximate posterior distribution q(h|x). Recently, there has been a line of papers which

adapted this idea into recurrent neural networks [45, 39, 38]. We have therefore included

VAE Sequence Models in our summary graph for latent variable models in Figure 1.10.

15

CHAPTER 2: METHOD OF MOMENTS LEARNING FOR HMMS WITH
SPECIAL TRANSITION STRUCTURES

As we talked about in the introduction, maximum likelihood learning of linear latent

variable models such as HMMs require local optimization algorithms such as expectation

maximization. The line of work such as [17, 18, 46, 19], introduced method of moments

based algorithms to learn basic latent variables such as mixture models and HMMs. The

applicability of these algorithm is however limited to basic models (HMMs and mixture

models), and in this chapter we introduce a framework which extends the applicability of

method of moments based methods to HMMs with special transition structure. Let us first

start with introducing method of moments learning.

2.1 METHOD OF MOMENTS

Method of moments is a statistical parameter estimation method which dates back to late

19’th century [47]. The idea is to estimate the models parameters θ by solving a system of

equations formed with observable moments E[gm(x)], m ∈ {1, . . .M}:

E[g1(x)] =f1(θ)

...

E[gM(x)] =fM(θ),

where, g1:M are the set of functions through which the observable moments are calculated,

and f1:M denote the set of functions of model parameters yielded by the moment expressions.

An easy example for method of moments is obtained by writing the moments of Gamma

distribution:

Method of Moments for gamma distribution:

Let x ∼ G(a, b). Let us write the first two moments for x:

E[x] =ab,

E[x2] =ab2 + a2b2,

16

we can then solve for a and b in closed form:

b̂ =(E[x2]− E[x]2)/E[x]

â =E[x]2/(E[x2]− E[x]2)

Note that closed form solution maximum likelihood estimates for a and b do not exist, and

we need to do iterative optimization for it. So, it seems like method of moments provide

a convenient alternative to maximum likelihood. Now, note that maximum likelihood is

the statistically the most efficient estimator (ML attains the Cramer-Rao lower bound).

Although in general, for latent variables models finding the maximum likelihood estimate

is NP-Hard [17]. We can however reduce the moment matching problem for several Latent

variables to an eigenvalue problem. Let us introduce this with a simple Gaussian mixture

model example.

2.1.1 Introduction to Method of Moments for LVMs:

Following [19], we demonstrate the moment matching procedure for a spherical GMM.

Let us have the following generative model:

hn

xn

n = 1 . . . N

hn ∼ Cat(π)

xn|hn ∼ N (µh, σ
2I)

The moment equations unfold as follows:

E[x⊗ x] =
K∑
k=1

πk µk ⊗ µk+σ2I,

E[x⊗ x⊗ x] =
K∑
k=1

πk µk ⊗ µk ⊗ µk + σ2

(
L∑
l=1

E[x]⊗ el ⊗ el + el ⊗ E[x]⊗ el + el ⊗ el ⊗ E[x]

)
,

where ⊗ denote tensor outer product (for vectors a, b, c, (a ⊗ b ⊗ c)ijk = aibjck). We can

then subtract the terms shown with red from the left hand side of the equation to obtain

17

the following system of equations:

M2 :=E[x⊗ x]− garbage =
K∑
k=1

πk µk ⊗ µk

M3 :=E[x⊗ x⊗ x]− garbage =
K∑
k=1

πk µk ⊗ µk ⊗ µk

So wee see that we can relate the observable moments to an expression which is constituted

of sum of rank-1 tensors. This form is in general known as the CP decomposition form [48].

In [17], it is shown that if the vectors µ1:K are orthogonal, it is possible to recover them using

power iterations (with global convergence guarantee). However, in general the parameter

vectors µ1:K are not orthogonal to each other. So the trick is to obtain a whitening matrix

W such that W>M2W = I. This can be done with singular value decomposition (SVD),

and we can use it to whiten M3 also.

As can be seen from this example, the moment matching methods give globally optimal,

and computationally cheap alternative to the EM algorithm. However, the moment methods

are not as general as EM and therefore only applicable on a small number of models. Ex-

amples include mixture models/basic topic models [18, 19, 17], Latent Dirichlet Allocation

[46], Hidden Markov Models [49, 18, 17], ICA [50], and PCA. There have been attempts of

generalization such as an inference framework for tree graphical models [51] and junction

trees [52], and a parameter estimation framework for graphs which satisfies certain condi-

tions [53]. To the best of our knowledge, it was not clear how to do method of moments

estimation with the existing methods in the literature.

One contribution in this thesis is to develop a method of moments framework for structured

HMMs. Namely, we show that mixture of HMMs [31], switching HMMs [32], left-to right

HMMs [27], and HMMs with mixture emissions [32] can be learnt by a method of moments

based framework. Now let us write down the moments for the mixture HMMs to show why

a straight-forward application of moment matching does not work.

18

2.2 METHOD OF MOMENTS FOR STRUCTURED HMMS

Let us write down the second order moment of a mixture of HMMs model (introduced in

Section 1.2) to see how and why the naive approach fails:

E[x2 ⊗ x1] =
∑
h,r1

ρhπh (E[x2|r1, h]⊗ E[x1|r1, h])

=
∑
h,r1

ρhπh

(∑
r2

A(r1, r2, h)µr2,h

)
⊗ µr1,h

=OflatAbdiagdiag(ρ⊗ π)O>flat

The problem is that the moment estimator is agnostic to the block structure of the model:

If we simply compute the moments, and input them into some eigenvalue solver, we would

be ignoring the group/block structure of the model. We therefore need to somehow re-

tain/enforce the group structure. But before doing that let us first formalize what we mean

by the term “group structure”.

Theorem 2.1. An MHMM with local parameters θ1:K = (O1:K , A1:K , ν1:K , π) is an HMM

with global parameters θ̄ = (Ō, Ā, ν̄), where

Ō =
[
O1 . . . OK

]
, Ā =

A1 0 . . . 0

0 A2 . . . 0
. . .

0 0 . . . AK

 , ν̄ =

π1ν1

π2ν2

...

πKνK

 ,

where Ō is the emission matrix, Ā is the transition matrix and ν̄ is the initial state distri-

bution.

Proof of Theorem 2.1. Consider the MHMM likelihood for a sequence xn:

p(xn|θ1:K) =
K∑
k=1

πk

{
1>M

(
Tn∏
t=1

Ak diag(Ok(xt))

)
νk

}

=1>MK

Tn∏
t=1

A1 0 . . . 0

0 A2 . . . 0
. . .

0 0 . . . AK

 diag(
[
O1 . . . OK

]
(xt))

π1ν1

π2ν2

...

πKνK

=1>MK

(
Tn∏
t=1

Ā diag(Ō(xt))

)
ν̄, (2.1)

19

where
[
O1 . . . OK

]
(xt) := Ō(xt). We conclude that the MHMM and an HMM with

parameters θ̄ describe equivalent probabilistic models.

This theorem tells us that mixture of HMMs is in fact an HMM with a block diagonal

transition matrix. The implication is that, if can somehow enforce the block diagonal struc-

ture on the learnt transition matrix, we can apply method of moments. Having this goal in

mind, let us introduce the two stage estimation framework.

2.2.1 Two stage estimation framework for Structured HMMs:

This framework is mainly based on the observation that an HMM is a mixture model.

The precise statement is as follows:

Theorem 2.2. An HMM with state marginals p(ht) is equivalent to a mixture model with

mixing weights π := 1
T

∑T
t=1 p(ht), and the same emission parameters [54].

This theorem implies one can separate the learning of the emission and transition matrices.

Namely, we can simply fit a mixture model to get the emission matrix. Now, note that the

second order moment for an HMM is given as follows:

E[x2 ⊗ x1] = OAdiag(π)O, (2.2)

where O is the emission matrix and A is the transition matrix. The usefulness of getting

the emission matrix and the mixing proportions π is that, we can plug these quantities in

Equation (2.2), and get an estimate for A with a convex program.

While doing so we can also impose structural constraints with affine constraints while not

sacrificing from convexity if we can somehow undo permutation ambiguity that is borne out

of the eigenvalue algorithm used in the estimation of the emission matrix. The overall two

stage estimation framework is summarized in Figure 2.1.

20

• Get rough/permuted estimates for the parameters Ô, Â, π̂, using method of moments.

• De-permute Â. (Solve the graph problem dictated by model)

• Solve: (Refinement step)

min
A
‖M̂2 − ÔAdiag(π̂)Ô‖F

s.t. 1>A = 1>,

A ≥ 0,

f(M, A) = 0,

where M̂2 denotes an empirical estimate for E[x2 ⊗ x1].

• f , and M depend on the model.

Figure 2.1: The two stage estimation framework for method of moments learning of HMMs
with special transition structures.

So, for a given structured HMM, if we can figure out a way to de-permute the initial

estimate for A, we can derive a method of moments based parameter estimation algorithm.

Once the parameter de-permutation is done, the estimate for A can be refined by imposing

an affine constraint of the form f(M, A) = 0, whereM is a binary mask used to encode the

structure of the transition matrix A. Here are the models that fit to our framework, along

with the description of their masks M:

• MHMM: f(M, A) = A� (1−M) = 0. M is block diagonal.

• SHMM: f(M, A) = A� (1−M)− B̂ ⊗ 1
M

1M1>M = 0. M is block diagonal.

• Left-to-Right HMM: f(M, A) = A�(1−M) = 0, estimateM with a greedy graph

traversal algorithm. M is lower triangular.

• Bakis HMM: f(M, A) = A�(1−M) = 0,M corresponds to an Hamiltonian circuit

(TSP approximation). M is binary lower first uni-triangular.

• HMM with mixture emissions: f(M, Ai,j) = Ai,j1>.

Now let us dwell on how to do the de-permutation for individual models, along with refer-

ences to our corresponding publications.

21

2.2.2 Mixture of HMMs

In [31], we showed that we can use the fact that a block diagonal transition matrix with K

blocks has K stationary distributions. We can therefore use a spectral clustering [55] type

algorithm to de-permute the global transition matrix. Now, let us formalize this statement.

Lemma 2.1. Assuming that each of the local transition matrices A1:K has only one eigen-

value which is 1, the global transition matrix Ā has K eigenvalues which are 1.

Proof for Lemma 2.1.

Ā =

V1Λ1V

−1
1 . . . 0

0
. . . 0

0 0 VKΛKV
−1
K

 =

V1 . . . 0

0
. . . 0

0 0 VK

Λ1 . . . 0

0
. . . 0

0 0 ΛK

V1 . . . 0

0
. . . 0

0 0 VK

−1

︸ ︷︷ ︸
V̄ Λ̄V̄ −1

,

where VkΛkV
−1
k is the eigenvalue decomposition of Ak with Vk as eigenvectors, and Λk as a

diagonal matrix with eigenvalues on the diagonal. The eigenvalues of A1:K appear unaltered

in the eigenvalue decomposition of Ā, and consequently Ā has K eigenvalues which are 1.

Now that we have established that for a non-pathological local transition matrices for

Kcomponent mixture of HMMs, we have K non-zero eigenvalues. This implies that if we

exponentiate this global transition matrix to the infinity, we get a transition matrix K

distinct columns:

Corrolary 2.1.

lim
e→∞

Āe =
[
v̄11>M . . . v̄k1

>
M . . . v̄K1>M

]
, (2.3)

where v̄k = [0> . . . v>k . . . 0>]> and vk is the stationary distribution of Ak, ∀k ∈ {1, . . . , K}.

Proof for Corrolary 2.1.

lim
e→∞

(VkΛkV
−1
k)e = lim

e→∞
VkΛ

e
kV
−1
k = Vk

1 0 . . . 0

0 0 . . . 0
. . .

0 0 . . . 0

V −1
k = vk1

>
M .

The third step follows because there is only one eigenvalue with magnitude 1. Since

multiplying Ā by itself amounts to multiplying the corresponding diagonal blocks, we have

the structure in equation (2.3).

22

We therefore conclude that given a permuted global transition matrix P(Ā) (where P
is the permutation mapping that is caused by the learning algorithm), we can cluster the

columns of P(Ā)∞, and group the columns of P(Ā) accordingly. This is obviously doable

in the case where there is no noise on the global transition matrix. However in real life the

estimate for the global transition matrix is noisy in addition to being permuted. This is

illustrated in Figure 2.2.

• What happens when we exponentiate Ā:

 e: 1

 r
t+1

 r
t

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

 e: 5

 r
t+1

 r
t

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

 e: 10

 r
t+1

 r
t

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

 e: 20

 r
t+1

 r
t

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

• What happens when we exponentiate P(Ā):

 e: 1

 r
t+1

 r
t

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

 e: 5

 r
t+1

 r
t

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

 e: 10

 r
t+1

 r
t

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

 e: 20

 r
t+1

 r
t

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

• What happens in practice:

 e: 1

 r
t+1

 r
t

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

 e: 5

 r
t+1

 r
t

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

 e: 10

 r
t+1

 r
t

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

 e: 20

 r
t+1

 r
t

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

Figure 2.2: Illustration of the effect of exponentiating the global MHMM transition matrix.

Because the estimated transition matrix is not exactly block diagonal, in practice there

is only one eigenvalue which is 1, and therefore the exponentiated matrix converges to a

stationary distribution. However, if we can somehow find the number of HMMs, we can

make a low-rank reconstruction, and cluster the columns of the reconstruction. Namely:

• If the eigenvalue structure is not too much corrupted (the precise condition is specified

below), we see a plateau in the number of significant eigenvalues across exponentiations

of (Ā)e. The largest plateau corresponds to the number of HMM components.

23

10 20
1

2

3

4

5

6

7

8

9

 e

K
′

 No. of Significant Eigenvalues

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

 Eigenvalue Index

 S
pe

ct
ra

l L
on

ge
vi

ty

 Spectral Longevity of Eigenvalues

Figure 2.3: Estimating number of clusters via spectral longevity.

• Then we can calculate the rank-K̂ reconstruction Ar:

Ar = V1:K̂Λ1:K̂V
−1

• We can then cluster the columns of the low rank reconstruction.

The precise condition on the corruption of the eigenvalue structure is given below.

Definition 2.1. We denote λGk := αkλ1,k for k ∈ {1, . . . , K} as the global, noisy eigenvalues

with |λGk | ≥ |λ
G
k+1|, ∀k ∈ {1, . . . , K−1}, where λ1,k is the original eigenvalue of the kth cluster

with magnitude 1 and αk is the noise that acts on that eigenvalue (note that α1 = 1). We

denote λLj,k := βj,kλj,k for j ∈ {2, . . . ,M} and k ∈ {1, . . . , K} as the local, noisy eigenvalues

with |λLj,k| ≥ |λLj+1,k|, ∀k ∈ {1, . . . , K} and ∀j ∈ {1, . . . ,M − 1}, where λj,k is the original

eigenvalue with the jth largest magnitude in the kth cluster, and βj,k is the noise that acts on

that eigenvalue.

Definition 2.2. The low-rank eigendecomposition of the estimated transition matrix ĀPε is

defined as Arε := V ΛrV −1, where V is a matrix with eigenvectors in the columns and Λr is

a diagonal matrix with eigenvalues λG1:K in the first K entries.

Conjecture 2.1. If |λGK | > max
k∈{1,...,K}

|λL2,k|, then Ar can be formed using the eigen-decomposition

of ĀPε . Then, with high probability, ‖Arε−Ar‖F ≤ O(1/
√
TN), where TN is the total number

of observed vectors.

Justification for Conjecture 2.1.

‖Arε − Ar‖F = ‖Arε − A+ A− Ar‖F ≤‖Arε − A‖F + ‖A− Ar‖F
=‖A− Ar‖F + ‖A− Aε + Ar̄ε‖F
≤‖A− Ar‖F + ‖Ar̄ε‖F + ‖A− Aε‖F
≤2KM +O(1/

√
TN) = O(1/

√
TN), w.h.p.,

24

where A is used for ĀP to reduce the notation clutter (and similarly Ar for (ĀP)r and so

on), we used the triangle inequality for the first and second inequalities and Ar̄ε = V Λr̄V −1,

where Λr̄ is a diagonal matrix of eigenvalues with the first K diagonal entries equal to

zero (complement of Λr). For the last inequality, we used the fact that A ∈ RMK×MK

has entries in the interval [0, 1] and we used the sample complexity result from [18]. The

bound specified in [18] is for a mixture model, but since the two models are similar and the

estimation procedure is almost identical, we are reusing it.

Conjecture 1 asserts that, if we have enough data we should obtain an estimate Arε close

to Ar in the squared error sense. Furthermore, if the following mixing rate condition is

satisfied, we will be able to identify the number of clusters K from the data.

Definition 2.3. Let λ̃k denote the kth largest eigenvalue (in decreasing order) of the esti-

mated transition matrix ĀPε . We define the quantity,

Lλ̃K′ :=
∞∑
e=1

([∑K′

l=1 |λ̃l|e∑MK
l′=1 |λ̃l′ |e

> 1− γ

]
−

[∑K′−1
l=1 |λ̃l|e∑MK
l′=1 |λ̃l′ |e

> 1− γ

])
, (2.4)

as the spectral longevity of λ̃K′. The square brackets [.] denote an indicator function which

outputs 1 if the argument is true and 0 otherwise, and γ is a small number such as machine

epsilon.

Lemma 2.2. If |λGK | > max
k∈{1,...,K}

|λL2,k| and arg maxK′
|λ̃K′ |2

|λ̃K′+1||λ̃K′−1|
= K, for K ′ ∈ {2, 3, . . . ,MK−

1}, then arg maxK′ Lλ̃K′ = K.

Proof for Lemma 2.2. The first condition ensures that the top K eigenvalues are global

eigenvalues. The second condition is about the convergence rates of the two ratios in equation

(2.4). The first indicator function has the following summation inside:

∑K′

l=1 |λ̃l|e∑MK
l′=1 |λ̃l′|e

=

∑K′−1
l=1 |λ̃l|e + |λ̃K′ |e∑K′−1

l′=1 |λ̃l′ |e + |λ̃K′ |e + |λ̃K′+1|e +
∑MK

l′=K′+2 |λ̃l′|e
.

The rate at which this term goes to 1 is determined by the spectral gap |λK′|/|λK′+1|. The

smaller this ratio is, the faster the term (it is non-decreasing w.r.t. e) converges to 1. For

the second indicator function inside Lλ̃K′ , we can do the same analysis and see that the

convergence rate is again determined by the gap |λK′−1|/|λK′ |. The ratio of the two spectral

gaps determines the spectral longevity. Hence, for the K ′ with largest ratio
|λ̃K′ |2

|λ̃K′+1||λ̃K′−1|
, we

have arg maxK′ Lλ̃K′ = K.

25

10 120 230 340 450 560 670 780 890 1000
0

1

2

Euclidean Distance vs Sequence Length

T

E
u

c
.
D

is
t.

3 3 3 3 3 3 3 3 3 3

Figure 2.4: Top row: Euclidean distance vs T . Second row: Noisy input matrix. Third row:
Noisy reconstruction Arε . Bottom row: Depermuted matrix, numbers at the bottom indicate
the estimated number of clusters.

20

20

80

80

80

80

20

80

60

40

53

65

82

83

80

77

62

95

100

82

68

73

97

66

80

82

86

100

88

100

58

76

65

79

85

81

100

98

81

100

73

78

61

97

80

60

100

100

100

100

79

77

69

69

84

100

100

100

100

100

76

77

69

100

100

88

78

100

100

100

88

78

88

80

100

100

100

100

100

75

58

63

82

78

100

100

100

79

100

100

78

86

80

100

87

77

80

100

100

100

 T

N

/K

 Accuracy (%) of spectral algorithm

10 31 73 116 158 200

1

12

34

56

78

100

60

80

60

40

80

60

80

60

60

40

100

100

100

100

100

100

100

80

80

100

100

100

100

100

71

100

100

80

100

80

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

80

100

100

100

100

100

100

100

100

100

100

80

100

100

100

100

100

100

100

100

100

80

80

100

100

100

100

100

100

80

100

100

100

100

100

100

100

100

100

100

100

100

100

 T

N

/K

 Accuracy (%) of EM algorithm

10 31 73 116 158 200

1

12

34

56

78

100

2

2

1

1

1

1

2

1

3

2

2

3

3

3

3

4

4

4

5

5

2

3

3

4

5

5

6

6

7

7

3

3

4

5

6

6

7

8

9

10

3

3

5

6

7

8

9

11

12

13

3

4

5

7

8

10

11

13

14

15

3

4

6

8

9

11

13

14

16

17

3

5

7

9

11

13

14

16

18

20

3

5

7

10

12

14

16

18

20

22

3

6

8

11

13

16

18

20

23

25

 T

N

/K

 Run time (s) of spectral algorithm

10 31 73 116 158 200

1

12

34

56

78

100

1

5

16

34

19

33

56

47

56

75

27

138

178

187

313

367

606

846

573

614

54

235

296

370

724

550

969

1093

1056

1616

89

427

378

529

703

1241

1873

1434

1418

2433

165

290

754

734

1301

1323

1646

1851

3074

2423

172

444

662

970

1477

1098

1892

3258

2030

2404

229

588

1040

1106

1683

1943

1861

2396

3603

3332

266

791

1335

2020

2457

2662

2311

4330

5137

5849

233

865

1664

2597

3761

4431

3914

4133

4247

4915

216

855

2046

1879

1875

3920

3609

3629

8719

6890

 T

 N
/K

 Run time (s) of EM algorithm

10 31 73 116 158 200

1

12

34

56

78

100

Figure 2.5: Clustering accuracy and run time results for synthetic data experiments.

Lemma 3 tells us the following. If the estimated transition matrix ĀPε is not too noisy, we

can determine the number of clusters by choosing the value ofK ′ such that it maximizes Lλ̃K′ .

This corresponds to exponentiating the sorted eigenvalues in a finite range, and recording

the number of non-negligible eigenvalues. This is depicted in Figure 2.3.

Experiments

Effect of noise on depermutation algorithm:

We have tested the algorithm’s performance with respect to amount of data. We used the

parameters K = 3, M = 4, L = 20, and we have 2 sequences with length T for each cluster.

26

We used a Gaussian observation model with unit observation variance and the columns of

the emission matrices O1:K were drawn from zero mean spherical Gaussian with variance 2.

Results for 10 uniformly spaced sequence lengths from 10 to 1000 are shown in Figure 2.4.

On the top row, we plot the total error (from centroid to point) obtained after fitting k-

means with true number of HMM clusters. We can see that the correct number of clusters

K = 3 as well as the block-diagonal structure of the transition matrix is correctly recovered

even in the case where T = 20.

Amount of data vs accuracy and speed:

We have compared clustering accuracies of EM and our approach on data sampled from

a Gaussian emission MHMM. Means of each state of each cluster is drawn from a zero

mean unit variance Gaussian, and observation covariance is spherical with variance 2. We

set L = 20, K = 5, M = 3. We used uniform mixing proportions and uniform initial

state distribution. We evaluated the clustering accuracies for 10 uniformly spaced sequence

lengths (every sequence has the same length) between 20 and 200, and 10 uniformly spaced

number of sequences between 1 and 100 for each cluster. The results are shown in Figure 2.5.

Although EM seems to provide higher accuracy on regions where we have less data, spectral

algorithm is much faster. Note that, in spectral algorithm we include the time spent in

moment computation. We used four restarts for EM, and take the result with highest

likelihood, and used an automatic stopping criterion.

Real data experiment:

We ran an experiment on the handwritten character trajectory dataset from the UCI ma-

chine learning repository [56]. We formed pairs of characters and compared the clustering

results for three algorithms: the proposed spectral learning approach, EM initialized at ran-

dom, and EM initialized with MoM algorithm as explored in [57]. We take the maximum

accuracy of EM over 5 random initializations in the third row. We set the algorithm param-

eters to K = 2 and M = 4. There are 140 sequences of average length 100 per class. In

the original data, L = 3, but to apply MoM learning, we require that MK < L. To achieve

this, we transformed the data vectors with a cubic polynomial feature transformation such

that L = 10 (this is the same transformation that corresponds to a polynomial kernel). The

results from these trials are shown in Table 2.1. We can see that although spectral learning

doesn’t always surpass randomly initialized EM on its own, it does serve as a very good

initialization scheme.

27

Table 2.1: Clustering accuracies for handwritten digit dataset.

Algorithm 1v2 1v3 1v4 2v3 2v4 2v5

Spectral 100 70 54 83 99 99

EM init. w/ Spectral 100 99 100 96 100 100

EM init. at Random 96 99 98 83 100 100

2.2.3 Switching HMMs and HMMs with mixture emissions:

As introduced in Section 1.2, this model is intimately related to the MHMM model above.

Namely, SHMM can also be expressed as a larger HMM with a transition which has a

special structure. The difference from MHMM is there is non-zero probability mass on the

off-diagonal of the global transition matrix. The formal definition is given below:

Theorem 2.3. An SHMM with local parameters θ1:K = (O1:K , A1:K , ν1:K , B) is an HMM

with global parameters θ̄ = (Ō, Ā, ν̄), where:

Ō =
[
O1 . . . OK

]
, Ā =

B1,1A1 B1,2

11>

M
. . . B1,M

11>

M

B2,1
11>

M
B2,2A2 . . . B2,M

11>

M

. . .

BM,1
11>

M
BM,2

11>

M
. . . BM,MAK

 ,

ν̄ =
[
π1ν1 π2ν2 . . . πKνK

]>
.

Proof Sketch for Theorem 2.3. The full joint distribution for SHMM is defined as follows:

p(x1:T , r1:T , h1:T)

=p(r1|h1)p(h1)
T∏
t=1

p(xt|rt, ht)p(rt|rt−1, ht−1)p(ht|ht−1),

=p(r1, h1)
T∏
t=2

p(xt|rt, ht)p(rt, ht|rt−1, ht−1).

At this point, we see that this expression is same as the HMM joint distribution if we define

a new variable rht : (rt⊗ ht), which is defined on the product space of rt and ht. Therefore,

SHMM is equivalent to an HMM with MK states, where the transition matrix is given by

Ā.

28

Similarly, an HMM with mixture emissions (HMM-M) can be seen as a larger HMM with

a particular global transition structure.

Theorem 2.4. An HMM-M with local parameters θ = (O1:K , B, ν1:K) is the k’th emission

matrix, B is the global regime transition matrix, and νk is the mixture proportions for the

k’th state, is an HMM with global parameters θ̄ = (Ō, Ā), where:

Ō =
[
O1 . . . OK

]
, Ā =

B1,1 ν11

>
M B1,2 ν11

>
M . . . B1,K ν11

>
M

B2,1 ν21
>
M B2,2 ν21

>
M . . . B2,K ν21

>
M

. . .

BK,1 νK1>M BK,2 νK1>M . . . BK,K νK1>M

 .

Proof Sketch for Theorem 2.4. The full joint distribution for HMM-M is defined as follows:

p(x1:T , r1:T , h1:T) =p(r1|h1)p(h1)
T∏
t=1

p(xt|rt, ht)p(rt|ht)p(ht|ht−1),

=p(r1, h1)
T∏
t=2

p(xt|rt, ht)p(rt, ht|ht−1),

=p(r1, h1)
T∏
t=2

p(xt|rt, ht)p(rt, ht|rt−1, ht−1).

We again see that the full joint distribution of HMM-M is equal to an HMM full-joint

distribution where the state variable is defined on the product space of rt and ht, and

the transition matrix is given by Ā. The last equality is due to conditional independence

structure of HMM-M model.

Because MHMM, SHMM and HMM-M are closely related (e.g. as shown above, SHMM

is an MHMM with a non-zero transition probability between the HMM groups), we can use

the same depermutation procedure that we have described for MHMMs above. If the global

mixing is not too strong (i.e. if the global HMM have the tendency to make transitions

within a group) then it is possible to depermute the global transition matrix. We demon-

strate this with a synthetic data experiment in Figure 2.6 for SHMM and in Figure 2.7

for HMM-M, where we change the probability of transitioning between groups. Namely, we

synthesize sequences from an SHMM model by using “regime transition” matrices respecting

the formula,

B =

 α 1− α

1− α α

 ,
29

α = 0.00 α = 0.11 α = 0.22 α = 0.33 α = 0.44 α = 0.55 α = 0.66 α = 0.77 α = 0.88 α = 0.99

0.00 0.11 0.22 0.33 0.44 0.55 0.66 0.77 0.88 0.99
0

2

4

α

E
r
r
o

r

Error vs α

 Before refinement

After refinement

Figure 2.6: Switching HMM experiment: We synthetically generate sequences where we
parametrically vary the probability with which we stay in an HMM component. The right-
most figure corresponds to the case where α = 0.99, which means the model stays in the
same HMM group almost certainly. (Top row) The original transition matrix. (Second row)
Estimated permuted transition matrix. (Third row) Depermuted estimated transition ma-
trix before refinement step. (Fourth row) Estimated transition after refinement step. (Last
row) The l1 error between the estimated transition matrix and the ground truth before and
after the refinement step.

that is, larger α is, the more lenient the model is on making transitions within a group (and

hence the property “group persistence” in [32]. We vary α in the range [0, 1], and see that

we can recover the original transition matrix well when α is close to 0 or 1.

2.2.4 Left to Right HMMs

As we have discussed in Section 1.2.1, a left-to right HMM is an HMM where state

transitions can only increase the state index. The challenge in applying a method-of moments

algorithm is again the permutation ambiguity introduced by the learning algorithm. In [27],

we propose using a greedy algorithm in the general left-to-right case. We also look at the case

where the state transition can only increase the state index by one. This case is known as the

Bakis HMM, and the depermutation amounts to solving the traveling salesman problem on

a weighted graph. Our synthetic data experiments suggest that initializing an EM algorithm

with our proposed framework provides a boost in running time. This is demonstrated in

Figures 2.8, 2.9. As we can see from the Figures, as the dataset size increases, the benefits of

30

α = 0.00 α = 0.11 α = 0.22 α = 0.33 α = 0.44 α = 0.55 α = 0.66 α = 0.77 α = 0.88 α = 0.99

0.00 0.11 0.22 0.33 0.44 0.55 0.66 0.77 0.88 0.99
0

5

α

E
r
r
o

r

Error vs α

Before refinement

After refinement

Figure 2.7: HMM-M experiment: The same caption in Figure 2.6 applies here.

using a method of moments initializer gets more and more apparent in the form of a speed

boost. Therefore using our algorithm potentially helps an EM algorithm to be more scalable

in larger datasets.

We now discuss how to recover the left-to-right ordering of the states which is needed to

enforce the lower triangular structure in Â.

Let P : [M] → [M] denote the permutation (where [M] = {1, . . .M}) corresponding to

the permutation matrix P from the first step of the general algorithm defined in Section 2.2.

Once again note that M = PSP> denotes the permuted binary mask that corresponds to

transition matrix structure (e.g.,M = PSLRP> in the general LR-HMM case). We give an

algorithm to estimate M for both the general LR-HMM and the more constrained Bakis

HMM.

Depermutation for a general LR-HMM

In the case of general LR-HMM, the transition matrix is lower triangular in its original

form. This means that for each i ∈ [M], the i’th row in A has the fewest non-zero entries

among all rows i′ ≥ i after excluding the diagonal entries of A and columns j < i. Thus, a

simple greedy algorithm recovers the permutation P from a sufficiently accurate estimate Â

of the transition matrix A (Algorithm 2.1).

31

Algorithm 2.1 The Depermutation Algorithm for General LR-HMM

1: Input: Transition matrix Â, threshold γ ≥ 0 (default: γ = 0).

2: Output: Binary mask M̂.
3: Initialize M̃i,j := 1(Âi,j > γ) for all (i, j) ∈ [M]2; v := [M].
4: for i = 1, 2, . . . ,M do
5: P(i) := argmini′∈v

∑
j∈v\{i′} M̃i′,j.

6: v := v \ {P(i)}.
7: end for
8: return M̂ = PSLRP>, where P is the permutation matrix corresponding to P .

Algorithm 2.1 takes a threshold parameter γ as input, which in practice can be tuned

using cross-validation (e.g., try several values for γ and choose the result yielding the model

with highest held-out likelihood). In the next section, we describe an algorithm specifically

tailored for Bakis HMMs that avoids this extra parameter.

Learning the refinement mask for Bakis HMM

The state transition structure of a Bakis HMM defines an Hamiltonian path (a tour

along the vertices, with each vertex visited exactly once) in the state space. Finding an

Hamiltonian path is known to be NP-Hard [58]. We therefore propose a greedy algorithm

in Algorithm 2.2.

This algorithm finds Hamiltonian paths starting from every state, and then picks the one

yielding the highest likelihood. If the number of sequences is small, then it is possible to

use a regularizer R(.) for the choice of k′. For example in a musical chord segmentation

experiment, one can choose the transition matrix which yields the Viterbi decoding with

most uniform-length segments, since a-priori we know that chords are played for similar

durations. Next, we show that if the estimated transition matrix is close to the true transition

matrix, the algorithm returns the correct answer, and consequently as the number of observed

sequences tends to infinity, the Algorithm is guaranteed to return the true parameters up to

a permutation of the state indices.

Definition 2.4. Let ε := ‖Â− PAP>‖1, where ‖.‖1 computes the sum of absolute values of

the entries of the argument.

Lemma 2.3. If ε ≤ minj maxi 6=j Ai,j, then the output of Algorithm 2.2 satisfies (1M1>M −
M)� Â = 0.

Proof of Lemma 2.3. The condition requires that the deviation ε should be smaller than the

32

Algorithm 2.2 The greedy algorithm for Bakis HMM

1: Input: Noisy and Permuted Transition Matrix Â.
2: Output: Binary Mask M.
3:

4: for k = 1 : M do
5: i = 1; j = k; vsts = {j};
6: while i < M do
7: j′ = arg maxl∈{1,...,M}\ vstsAl,j;
8: vsts = {vsts, j′}; . Add j′ to the list of visited vertices.
9: Masks(j′, j, k) = 1;

10: j = j′; . Next state to visit is j′.
11: i = i+ 1;
12: end while
13: Masks(k, j′, k) = 1; . Optional step to complete the cycle.
14: A′(:, :, k) = Normalize(A� (Masks(:, :, k) + I));

. Normalize A according to the estimated mask
15: end for
16: k′ = arg maxl∈{1,...,M} log p(x1:T |A′(:, :, l))− λR(A′(:, :, l)); . Pick the mask with largest

regularized log-likelihood.
17: returnM = Masks(:, :, k′) + I;

smallest of second largest column entries in A. If this is satisfied, then then the algorithm

will find the true Hamiltonian path since the true path will remain unaltered in Â.

Theorem 2.5. As the number of observed sequences N → ∞, Algorithm 2.2 is guaranteed

to find the true mask M.

Proof Sketch for Theorem 2.5. As N → ∞, the estimates of the tensor power method con-

verges to the true emission matrix O and the mixing weights π. Furthermore, due to law of

large numbers the empirical moment converges to the true moment: M̂2 → M2. When this

is the case, one can show that a pseudo-inverse estimator Ô†M̂2(Ô>)†diag(π̂)−1 converges

to A. Since argminA′‖M2 − OA′diag(π)O>‖F is in the feasible region, the solution of the

optimization problem in Section 2.2 is equal to this pseudo inverse estimator, and therefore

ε → 0. This results in the condition in Lemma 3 being satisfied, and therefore Algorithm

2.2 is guaranteed to return the true mask M.

Experiments

Synthetic Data Experiment:

We experimentally studied the time-accuracy tradeoff for the proposed algorithm (MoM),

33

expectation maximization (EM), and EM initialized by MoM for various number of EM

iterations. For sequence lengths 400, 4000, and 40000 we generated 10 sequences for two

classes from Bakis HMM, with 4 hidden states and Gaussian emission model. The means

of the Gaussians were drawn from a zero mean unit variance Gaussian. The observation

model was a Gaussian with variance 8. We learned Bakis HMMs from these sequences. We

then did Viterbi decoding on 10 test sequences generated from the same Bakis HMMs used

in training. For EM learning we used a code which has the E-step of EM implemented in

MEX. For EM, we did 5 random initializations, and accepted the new set of parameters

when we observed an increase in the log-likelihood. We repeated the experiment for 5 times.

Error bars show the standard deviation of accuracy over the random repeats. We observed

that the variance of the repeats vanished for longer sequences. The time-accuracy tradeoff

curves averaged over 5 repeats are given in Figure 2.8. We see that MoM is faster for longer

1.0 2.0 4.1 8.4 17.2 34.9 71.1 144.8 294.8 600.0
90

92

94

96

98

0

12345

0
12345

0 1 2 3 45 0 1 2 3 4 5

 Run Time (sec)

A

c
c
u
ra

c
y

(%

)

 Viterbi decoding accuracy

400

4000

40000

200000

Figure 2.8: Time-Accuracy tradeoff curve for Synthetic Experiment. Different colors corre-
spond to different sequence lengths. Triangles show the performance of randomly initialized
EM. Different points with the same color correspond to an random EM initialization. (The
further to the right, the larger the number of initializations) The solid curves show the
performance of EM initialized with MoM. The numbers correspond to the number of EM
iterations after initialization (0 means MoM only). Time axis is logarithmic.

sequences and thus more scalable than EM.

Real Data Experiment:

In this section, we work on detecting the speech onsets on a long sequence consisted of

48 concatenated utterances of digit 7 by the same person. We trained an ergodic Bakis

HMM on the sequence, and used the Viterbi state sequence decoding to detect the utterance

onsets. We defined an onset as a transition from the last state to the first state of the

HMM, which are respectively determined by setting the first state as the very first and last

elements of the Viterbi sequence. We used 29-dimensional MFCC features. To measure the

performance of the onset detection we used the precision, recall and F-measure criterions

defined in [59]. Similar to the previous section we compared the proposed algorithm (MoM),

34

randomly initialized EM (we used 5 random restarts and report only the restarts until the

best F-measure), and EM initialized by MoM. Note that, the forward-backward part of

the EM code is implemented with MEX (a C interface for MATLAB which accelerates the

run time substantially), and the proposed method is implemented in MATLAB, with the

optimization part implemented with CVX [60]. The F-measure - time tradeoff curves for 4

different sequence lengths are given in Figure 2.9. We are able to use sequences longer than

48 utterances by replicating the sequence. The numbers given in the legend correspond to

the number of replicates.

1.58 2.48 3.91 6.17 9.72 15.33 24.15 38.07 60.00

0.93

0.94

0.95

0

1

01

23

4

0

1

2 3

4

0

1

2 3

4

 F−measure vs Time

F

−
m

e
a
s
u
re

 Run Time (sec)

25

100

400

1600

Figure 2.9: F-measure/time tradeoff curves. Different colors correspond to different number
of replicates. Triangles correspond to randomly initialized EM. The solid curves correspond
to EM initialized with MoM. The numbers show the number of EM iterations after initial-
ization (0 means MoM only). Time axis is logarithmic.

As can be seen from the figure, the proposed Algorithm provides a more scalable alternative

to EM. Even though the forward backward part of the EM code is implemented with MEX,

the proposed algorithm is faster in longer sequence lengths. We also see that it’s a fast way

for initializing EM.

2.3 HIGH-LEVEL IMPRESSIONS ON METHOD OF MOMENTS (MOM) FOR LVMS

I can summarize my overall impression on method of moments learning algorithms for

latent variables as follows:

• Good:

– Global: This is probably the most attractive feature of MoM algorithms for me:

The devised moment matching problem has a unique global optimum, and we

have efficient algorithms to solve it.

35

– Initialization: Because we can get to the global optimum, we do not need to

worry about initialization. Furthermore, as we demonstrated for MHMM and

Left-to-right HMMs, we can initialize EM and improve the accuracy and speed

of EM.

– Scalable: The algorithms are computationally cheap, therefore scalable. Namely,

we only collect moments, and then factorize a small tensor.

– Interesting/Theoretical: Altough I haven’t talked about it in this document,

one reason people like these methods is because it possible to analyze them, and

provide PAC style (probably approximately correct) style guarantees.

– Subroutine: As discussed earlier, altough the applicability of the MoM algo-

rithms is limited compared to the established frameworks such as EM or MCMC

methods, it is possible to use MoM algorithms as a subroutine. One application is

using them in the M-step of EM (E.g. in a clustering algorihm, given a partition,

we can fit individual models for each cluster using an MoM routine) I explored

this idea in my master’s thesis [61], and this potentially can be a good direction

to explore.

• Bad:

– Limited Applicability: This is the reason why it has been possible for us to

publish papers. There is no established framework to capture a wide array of

models, unlike EM or MCMC.

– Model Mismatch: Since there is a hard assumption on the moments, the overall

procedure is not very robust to model mismatch. Note that maximum likelihood

explicity tries to minimize KL(p‖q), where p is the data distribution and q is the

distribution/model we are trying to fit.

– Statistical Efficiency: From Cramer-Rao lower bound, in terms of variance

of the estimate we know that the most efficient parameter estimation method is

maximum likelihood. Therefore, using MoM is statistically not the most efficient

method.

• Ugly:

– Since the eigenvalues algoritms utilized in estimation do not explicity constrain

the estimates, it is possible to get estimates which are out of support of the

distribution (e.g. it possible to obtain complex numbers for probabilities).

36

CHAPTER 3: IDENTIFIABLE LEARNING FOR FACTORIAL HIDDEN
MARKOV MODELS

As we have introduced in Section 1.2.1, FHMM models the mixing process of sources in a

cocktail party set-up. Although an accurate model, learning FHMM parameters from data

is difficult. In fact, in this section we show that given the mixture, even if we know all the

latent Markov chains, it is impossible to recover the correct emission matrices. Since the

original model is unidentifiable, we propose two identifiable alternatives.

We note that for a factorial model, the emission model of a factorial model can be written

in the following form:

x|r1:K =
K∑
k=1

Okrk + ε

=[O1 O2 . . . OK]

r1

r2

...

rK

+ ε

=OR + ε, (3.1)

where O, and R are the concatenated versions of emission matrices and the activations,

respectively. Note that we use the one hot encoding to express the output with a matrix

multiplication. The input/output shapes are as follows: x ∈ RL×T , O ∈ RL×KM , and

R ∈ RKM×T . Now, if want to get an estimate for the emission matrices O, and the activations

R, we need to solve a problem very similar to the well known dictionary problem: [62, 63]

min
O,R
‖x−OR‖2

F

s.t. columns of R are block K sparse.

The dictionary learning is a very well studied in computer science and electrical engineering,

and it is for example globally solvable for the following cases:

• PCA: Both O and R are orthogonal.

• ICA: Solvable if R has independent coordinates. [64, 50]

• Mixture Model: R is one sparse. Solvable is O has full column rank. [19]

37

• Sparse Dictionary Learning: Solvable if O is square and R is sparse Bernouilli-

Gaussian. [65]

Despite the fact that we can view the learning problem for an FHMM as a dictionary learning

problem, the problem is non-convex and consequently it is very difficult to reach a global

optimum. But what is even worse for FHMM is, even if we are given the true activation

matrix R, there are infinitely many plausible solutions for the emission matrices O. We

formally prove this in the next subsection.

3.1 IDENTIFIABILITY IN STANDARD FACTORIAL MODEL

As stated earlier, the learning goal is to estimate the dictionary matrices

Ok = [µk1, µ
k
2, . . . , µ

k
M], ∀k ∈ [K]

, up-to permutation of the columns µk1:M of each dictionary, and up-to permutation of

the dictionaries. We assume that the individual emission matrices have full column rank

rank(Ok) = M . Unfortunately the emission matrix of a Gaussian factorial model in its

original form in [13, 12, 66] is unidentifiable: Even if an oracle gives the true assignment

matrix R, there are infinitely many plausible dictionary matrices O. We will show that the

assignment matrix R is rank deficient, which will lead us to the conclusion of unidentifiability.

Lemma 3.1. Let Rc ∈ RMK×MK
denote a matrix whose columns consist of all possible

combinations Rt can take (e.g. for M = 2, K = 2 case Rc =

e1 e1 e2 e2

e1 e2 e1 e2

). We

conclude that rank(Rc) = MK − (K − 1).

Proof of Lemma 3.1. We will show this by computing the dimensionality of the left null

space of Rc. Let,

rkm(m1,m2, . . . ,mk, . . . ,mK) :=

 1, if mk = m

0, otherwise
,

where k ∈ [K], and m ∈ [M]. This function returns the (k−1)M+m’th row of the column of

Rc that corresponds to the combination represented by the tuple (m1,m2, . . . ,mk, . . . ,mK),

where mk ∈ [M]. For a vector α ∈ RMK ∈ null((Rc)>), by definition α>Rc = 0>MK . Let us

38

consider the structure of such α:

K∑
k=1

M∑
m=1

αkmr
k
m(m1,m2, . . . ,mk, . . . ,mK) =

K∑
k=1

αkmk = 0 (3.2)

So, we see that the sum of the elements α that correspond to different k’s should sum up to

zero. Furthermore for a tuple that only differs in k’th element:

K∑
k=1

M∑
m=1

αkmr
k
m(m1,m2, . . . , m̃k, . . . ,mK) =

∑
k′ 6=k

αk
′

mk′
+ αkm̃k = 0, (3.3)

where mk 6= m̃k, and ∀k ∈ [K]. By comparing Equations (3.2) and (3.3), we see that

αkm̃k = αkmk . And consequently αkm = αkm′ , ∀(m,m′) ∈ [M], and ∀k ∈ [K]. Together with the

constraint
∑K

k=1 α
k
mk

= 0 , we conclude that dim(null((Rc)>)) = K − 1. Therefore, from

the rank-nullity theorem, rank(Rc) = KM − dim(null((Rc)>)) = KM − (K − 1).

Corollary 3.1. The rank of the assignment matrix R ∈ RMK×T is upper bounded: rank(R) ≤
KM − (K − 1).

Proof of Correlary 3.1. The columns of the assignment are such that Rt = Rcel, l ∈ [MK].

If R happens to contain all columns of Rc, it achieves the rank of Rc. In the case where

R does not contain all columns of Rc, its rank is smaller than KM − (K − 1). Therefore,

rank(R) ≤ KM − (K − 1).

Theorem 3.1. Given an assignment matrix R ∈ RKM×T , the emission matrix of a Gaus-

sian factorial model is not identifiable, meaning there exists O1 6= O2 ∈ RL×KM such that∏T
t=1N (xt|O1Rt,Σ) =

∏T
t=1N (xt|O2Rt,Σ).

Proof of Theorem 3.1. We observe that
∏T

t=1N (xt|O1Rt,Σ) =
∏T

t=1N (xt|O2Rt,Σ), if (O1−
O2)Rt = 0, ∀t ∈ [T], which is equivalent to (O1 − O2)R = 0. Due to Corollary 3.1,

dim(null(R>)) ≥ K − 1. Therefore we conclude that (O1 −O2)R = 0 for O1 6= O2. �

We also intuitively see the model is unidentifiable since there areKM vectors to estimate in

O but we only have KM−(K−1) linearly independent equations, as Corollary 3.1 suggests.

Making this observation, we reduce the number of model parameters to KM − (K − 1) by

setting a shared component µkM = s, ∀k ∈ [K], where s ∈ RL.

39

3.2 SHARED COMPONENT FACTORIAL MODEL (SC-FM)

Definition 3.1. (The Shared Component Factorial Model - SC-FM) The emission

matrix of a SC-FM is of the form Õ = [Õ1, . . . , Õk, . . . , ÕK , s], where Õk ∈ RL×(M−1), and

s ∈ RL is the shared component. The latent state indicators are either an indicator vector

or an all zeros vector: r̃kt ∈ (0M−1 ∪ e1:M−1). The columns of the assignment matrix R̃ are

of the form R̃t = [(r̃1
t)
>, . . . , (r̃kt)

>, . . . , (r̃Kt)>, K −
∑K

k=1

∑M−1
m=1 1(r̃kt = em)]>.

Lemma 3.2. Let R̃c ∈ R(KM−(K−1))×MK
denote a matrix whose columns consist of all

possible combinations R̃t can take. We conclude that rank(R̃c) = KM − (K − 1), and

consequently rank(R̃) ≤ KM − (K − 1). For example, for the M = 3, K = 2 case,

R̃c =

e1 e1 e2 e2 e1 e2 02 02 02

e1 e2 e1 e2 02 02 e1 e2 02

0 0 0 0 1 1 1 1 2

.

Proof of Lemma 3.2. We will prove this by showing that the left null space of R̃ only contains

an all-zeroes vector. Let,

r̃km(m1,m2, . . . ,mk, . . . ,mK) :=

 1, if mk = m

0, otherwise
,

and q(m1,m2, . . . ,mk, . . . ,mK) := K −
∑K

k=1 1(mk 6= 0) for k ∈ [K], m ∈ [M − 1] and

mk ∈ 0 ∪ [M − 1]. The first function represents the first (M − 1)K rows, and the sec-

ond function represents the last row of R̃c, for the column that corresponds to the tuple

(m1,m2, . . . ,mk, . . . ,mK). For a vector α ∈ RKM−(K−1) in the left null space of Rc, α>Rc =

0MK . Let us evaluate
∑

k,m α
k
mr̃

k
m(m1,m2, . . . ,mk, . . . ,mK) + αqq(m1,m2, . . . ,mk, . . . ,mK)

for the tuple (0, . . . , 0):

K∑
k=1

M−1∑
m=1

αkmr̃
k
m(0, . . . , 0) + αqq(0, . . . , 0) = Kαq = 0 (3.4)

So we conclude that αq = 0. Next, we do the evaluation for the tuple (0, . . . ,mk, . . . , 0),

where only one element mk is not equal to zero:

K∑
k=1

M−1∑
m=1

αkmr̃
k
m(0, . . . ,mk, . . . , 0) + αqq(0, . . . ,mk, . . . , 0) = αkmk + (K − 1)αq. (3.5)

By comparing Equations (3.4) and (3.5), we see that αkm = 0, ∀k ∈ [K] and ∀m ∈ [M − 1].

40

So, we conclude that dim(null((R̃c)>)) = 0, and therefore from the rank-nullity theorem,

rank(R̃c) = KM − (K − 1). And, if R̃ contains all columns of R̃c it has the same rank,

which is the upper limit.

Theorem 3.2. Given an assignment matrix R̃ which contains all columns of Rc, the emis-

sion matrix of an SC-FM is identifiable.

Proof of Theorem 3.2. After going through the same reasoning in Lemma 3.1, we again end

up with the condition of having the term (Õ1−Õ2)R̃ not equal to zero for two different emis-

sion matrices Õ1 6= Õ2 for identifiability. As we have seen in Lemma 3.2, dim(null(R̃>)) = 0

in the case where R̃ contains all possible assignment vectors. Therefore we conclude that

(Õ1 − Õ2)R̃ 6= 0 for Õ1 6= Õ2, and consequently the emission matrix of an SC-FM is identi-

fiable, given an assignment matrix R̃.

This theorem shows that the mapping Õ → X̃ = ÕR̃ is one-to-one. Even though this

is the case, it is still not trivial to extract the columns of the emission matrix Õ from the

observed data X̃, simply because we do not have R̃. However, we know the structure of R̃c,

which contains all possibilities for the columns of R̃c. In the next section we will describe

an algorithm which uses this fact.

3.2.1 Parameter Learning for Shared Component Factorial Model

We propose the following algorithm for learning the parameters of the shared component

factorial model: We first calculate an estimate for the combinations observed in the data X,

which we denote with X̃c, with a clustering algorithm. Naturally, columns of X̃c contains an

arbitrary and an unknown permutation, which leads us to the system X̃cΠ = ÕR̃cΠ, where

Π ∈ RKM×KM is a permutation matrix. This system has a different solution for different Π

matrices, and therefore we cannot solve this system for the true emission matrix unless we

know Π. However, by assuming that the shared component s is less correlated to the non-

shared components than the correlation between the non-shared components, we will show

that it is possible to extract the components by computing pairwise correlations between

the columns of X̃c.

To reduce the notation clutter we drop tilde’s, although we still refer to the SC-FM

parameters, and we use the regular factorial model notation where the indicator variable

rkt ∈ [M], for k ∈ [K], where the notation [N], for some integer N denotes the set {1, . . . , N}.
Conforming with that notation we set the last columns of all the emission matrices to be

the shared component, such that µkM = s, ∀k ∈ [K]. E.g., for M = 2, K = 2 case

O = [µ1
1, s, µ

2
1, s].

41

Learning the emission matrix from Xc

In this section we describe an algorithm which extracts the columns of the emission matrix

by looking at the pairwise correlations of the columns of Xc matrix. The first step is to find

which column of Xc corresponds to the shared component.

Definition 3.2. Let xl denote l’th column of Xc, so xl := Xc(:, l) =
∑K

k=1

∑M−1
m=1 µ

k
mr

k
m,l +∑K

k=1 s r
k
M,l, where rkm,l, l ∈ [MK] denotes the m’th entry of an indicator vector of length M

where only the m’th entry is one and the rest is zero, for the k’th emission matrix and l’th

possible combination.

Definition 3.3. Let v(xl′) : RL → RMK
denote a vector valued function with the argument

xl′, such that v(xl′) = ω ([〈x1, xl′〉 , 〈x2, xl′〉 , . . . , 〈xl, xl′〉 , . . . , 〈xMK , xl′〉]), where ω : [MK]→
[MK] is an ascending sorting mapping such that v1(xl′) ≤ v2(xl′) ≤ · · · ≤ vMK (xl′), where

vl(xl′) is the l’th smallest element in v(xl′) vector.

Lemma 3.3. If
〈
µk
′′

m′′ , s
〉
≤
〈
µkm, µ

k′

m′

〉
, ∀(k, k′, k′′) ∈ [K], and ∀(m,m′,m′′) ∈ [M − 1], i.e.

for any component µkm, the least correlated component is s, and
〈
µkm, s

〉
≤ 〈s, s〉, ∀k ∈ [K],

m ∈ [M − 1], i.e., the shared component s has a non-trivial magnitude (e.g. all zeros vector

doesn’t satisfy this condition), then

Ks = argminxl′ ,l′∈[MK]

(M−1)K∑
l=1

vl(xl′), for M > 2, K ≥ 1. (3.6)

Proof of Lemma 3.3. We want to show that given that the specified incoherence conditions

are satisfied, the sum of the smallest (M − 1)K terms in {〈xl, xl′〉 : l ∈ [MK]} get mini-

mized when we set xl′ = Ks. In the proof given in supplemental material, we consider all

possibilities for xl′ and conclude that the minimizing possibility is Ks.

Lemma 3.3 suggests that by computing pairwise correlations, it is possible to identify

the column in Xc which corresponds to Ks component: The summation of first (M − 1)K

terms in v(xl′) is minimized when we set xl′ = Ks. Therefore, we compute v(xl′) for all

columns of Xc, and assign the minimizing column to the term Ks. In M = 2 case argmin

of this summation contains multiple minimizers (including Ks), and we suggest a fix for

that specific case with an additional assumption in the supplemental material. Now that we

know how to estimate the Ks term, next we look at the structure of v(Ks) to extract the

non-shared components.

Definition 3.4. Let BK′ := {l ∈ [MK] :
∑K

k=1 r
k
M,l = K ′}, i.e. the indices l for which s

42

appears K − K ′ times, which corresponds to the terms of the form
∑K

k=1

∑M−1
m=1 µ

k
mr

k
m,l +

(K −K ′)s, l ∈ BK′.

Lemma 3.4. Let BK′

l :=
〈∑K

k=1

∑M−1
m=1 µ

k
mr

k
m,l + (K −K ′)s,Ks

〉
, l ∈ BK′. If

〈
s, µkm

〉
≤

〈s, s〉, ∀k ∈ [K], and ∀m ∈ [M −1], then for MK− (M −1)K ≤ l′ ≤MK−1 , vl′(Ks) = B1
l

for some l ∈ B1.

Proof of Lemma 3.4. Let us expand the expression BK′

l :

BK′

l = K
K∑
k=1

M−1∑
m=1

〈
µkm, s

〉
rkm,l + (K −K ′)K 〈s, s〉 , l ∈ BK′ .

Since only K ′ terms are active on the first term, and due to the condition 〈s, s〉 ≥
〈
s, µkm

〉
,

∀k ∈ [K], ∀m ∈ [M − 1], we see that the above expression reaches the maximum value when

K ′ = 0. By the same token, we conclude that B1
l > BK′

l′ , ∀K ′ > 1, l ∈ B1, l′ ∈ BK′ , since the

number of 〈s, s〉 terms decrease as K ′ increases. Therefore, the largest elements of v(Ks)

after vMK (Ks) correspond to B1
l , l ∈ B1, as suggested by the lemma.

We had an estimate for s in the previous step, and now that we know which observed xl

vectors correspond to the vectors comprised partly of (K − 1)s (i.e. terms corresponding

to B1) from Lemma 3.4, we can estimate the non-shared components simply by subtracting

(K − 1)s from each term in B1. The only remaining problem is to group them into proper

emission matrices O1:K .

Finding the grouping of the components

We know from Lemma 3.3 that the (M − 1)K smallest elements of v(Ks) (which also

correspond to BK) are associated with all possible combinations of non-shared components

that do not contain any term involving s. To find the groupings for the dictionary elements we

solve a linear system of the form Y = WH for H, where the columns of the W matrix are the

non-shared components estimated by subtracting (K−1)s from components corresponding to

B1, and columns of Y correspond to all possible combinations of the non-shared components

which correspond to BK . Solving this system figures out which combinations of the non-

shared components corresponding to B1 add up to the combinations corresponding to BK ,

which are encoded in H. In practice we have observed that solving the following optimization

problem which enforces sparsity on the columns ofH works well: Ĥ = argminH‖Ŷ −ŴH‖F+∑
t ‖H(:, t)‖1.

43

Summary of emission matrix learning

For a shared component factorial model (HMM or Mixture model), given the matrix

of all possible observations Xc ∈ RL×KM
, and provided that the columns of the emission

matrix satisfy
〈
µk
′′

m′′ , s
〉
≤
〈
µkm, µ

k′

m′

〉
, and

〈
µk
′′

m′′ , s
〉
≤ 〈s, s〉, ∀(k, k′, k′′) ∈ [K], k 6= k′ and

∀(m,m′,m′′) ∈ [M − 1], Algorithm 3.1 finds the columns of the emission matrix O upto

permutation among the columns of each emission matrix Ok and permutation of the emission

matrices.

Algorithm 3.1 Emission matrix learning for F-GMM/F-HMM.

Input: The clustered data matrix Xc ∈ RL×KM

Output: Estimated emission matrix Ô ∈ RL×KM

• Compute the correlation matrix Ci,j = 〈Xc(:, i), Xc(:, j)〉, ∀i, j ∈ RMK
.

• Let Cs denote the C matrix with sorted rows in increasing order. Set i∗ =

argmini
∑(M−1)K

j=1 Cs
i,j, v = Cs(:, i∗), and ŝ = Xc(:, i∗)/K.

• Find the indices of (M − 1)K largest elements in v, write the indices in B1. Set Ŵ =
Xc(:,B1)− (K − 1)s1>K−1.
• Find the indices of (M − 1)K smallest elements in v, write the indices in BK . Set

Ŷ = Xc(:,BK).

• Set Ĥ = argminH‖Ŷ − ŴH‖F +
∑

t ‖H(:, t)‖1, and group the columns of Ŵ according

to Ĥ in Ô.
• Output the corresponding estimate Ô.

Estimating the auxiliary parameters

Hidden state parameters:

Once we have an estimate Ô for the emission matrix, the assignment matrix can be esti-

mated by solving the optimization problem, R̂ = argminR‖ÔR−X‖F +
∑T

t=1 ‖R(:, t)‖1. We

estimate the assignment probabilities π1:K for F-GMM, or the transition matrices A1:K for

F-HMM simply by counting the occurrences in R̂:

π̂ki = 1
T

∑T
t=1 1(r̂kt = ei), Â

k
i,j = 1

T−1

∑T−1
t=1 1(r̂kt+1 = ei)1(r̂kt = ej), i, j ∈ [M], k ∈ [K]. In

practice, R̂ is noisy and the entries are not binary. We threshold the R̂ matrix to make it

binary before the counting step.

Covariance matrix:

Once we have estimates for the emission and the assignment matrix, we subtract the recon-

struction from the data to make it zero mean. After that the covariance matrix is estimated

44

<
2

1 2 3 4 5

D
ic

tio
na

ry
 E

rr
or

0

20

40

60

80

Error vs Noise Variance

Dictionary Learning
EM

(a) Error vs σ2, L = 50,
T = 200.

L
100 200 300 400 500

D
ic

tio
na

ry
 E

rr
or

0

100

200

Error vs Dimensionality

Dictionary Learning
EM

(b) Error vs L, σ2 = 0.5,
T = 200.

T
200 400 600 800 1000

D
ic

tio
na

ry
 E

rr
or

0

20

40

60

80

Error vs Dataset Size

Dictionary Learning
EM

(c) Error vs T , L = 50,
σ2 = 0.5.

T
200 400 600 800 1000

R
un

 T
im

e
(s

ec
on

ds
)

0

2

4

6

8

Run Time vs Dataset Size

Dictionary Learning
EM

(d) Run time vs T , L =
50, σ2 = 0.5.

Figure 3.1: Various performance measures for the proposed algorithm and EM on synthetic
data averaged over 50 trials.

with the usual covariance estimator: Σ̂ = 1
T−1

∑T
t=1

(
Xt − (ÔR̂)t

)(
Xt − (ÔR̂)t

)>
, where

(ÔR̂)t denotes the reconstruction at time t.

Experiments

Synthetic Data We conducted experiments with synthetic data generated from shared

component factorial model. We set M = 3 and K = 2. The columns of the emission matrix

are sampled from a Gaussian with variance 10. The observation noise variance σ2, data

dimensionality L, and number of observations T were all varied to compare the behavior

of the proposed approach and EM. For the clustering step in the proposed approach, we

applied the algorithm in [67]. For EM, we used 10 restarts with dictionaries started at the

perturbed versions of the mean of the observed data. We report the result of the initialization

that resulted in the highest likelihood. As error, we report the euclidean distance between

the estimated dictionary matrix O and the true dictionary, by resolving the permutation

ambiguity. Figure 3.1 shows various comparisons between the two algorithms in terms of

accuracy in recovering the true dictionaries and run time. The parameter setup for the fixed

variables is shown under each figure. We see that the algorithm works much better than

EM in general. We also see from Figure 3.1d that the proposed approach is faster, and

potentially more scalable than EM.

Digit Data In this experiment, we work with digit images from the MNIST dataset [5].

We compare the proposed dictionary learning approach with an EM algorithm [21], on

synthetically combined images according to the shared component factorial model, where

45

(a) All possible combinations for the observations

(b) Dictionary Learning (c) EM

Figure 3.2: Unmixing of synthetically mixed noisy digit images with SC-FM. Figures (b)
and (c) show the the learned emission matrices for the proposed algorithm and EM. A row
in Figures (a) and (b) corresponds to the components corresponding to the same group.

we set M = 4, and K = 2. We generate 2000 such images. The images are of size 28× 28.

We normalize the pixel values so that they take on values between 0 and 1. We add spherical

Gaussian noise with standard deviation σ = 0.22 to every generated image. We initialize

the columns of the emission matrix in EM with the randomly perturbed versions of the

mean of the generated data. We do 10 such random initializations and pick the initialization

with the highest likelihood. In Figure 3.2, we show the all noisy versions of 16 possible

combinations. We also show the reshaped versions of the learned columns of the dictionaries

for the proposed algorithm and EM.

We see that the estimates obtained with dictionary learning approach are close to the true

digits, whereas EM finds a local solution which deviates from the true digits significantly.

Conclusions & Discussion for SC-FM

We have shown that the standard factorial model in the literature is not learnable. We

then proposed an exact algorithm for the case where there is a one column sharing assump-

tion between K emission matrices. Although the proposed algorithm solves the parameter

estimation problem in a global fashion, it requires all combinations to be observed, which

scales exponentially as O(MK). Furthermore, the shared component assumption does not

hold in many cases. In the next section, we propose another identifiable factorial model for

which we only require linearly many combinations to be observed.

46

3.3 REVEALING FACTORIAL MODEL

In this section we show that introducing random binary switches for each observation gives

us an identifiable model. The reason behind why the model is identifiable is because thanks

to the random binary switches, some of the component do contribute to the observations in

isolation, which enables to obtain a direct estimate for dictionary elements (columns of the

O matrix). The corresponding generative process can be written as follows:

skt ∼ BE(π), k ∈ {1, . . . , K},

r1
t |r1

t−1, s
k
t ∼ s1

tDiscrete(A1r1
t−1),

...

rKt |rKt−1, s
k
t ∼ sKt Discrete(AKrKt−1),

xt|r1
t , . . . , r

K
t , s

1
t , . . . , s

K
t ∼ N ([O1s1

t , . . . , O
KsKt]

r1
t

. . .

rKt

 , σ2I),

where skt denotes the introduced switch variable. (Other than the switch variable the model

remains exactly the same as the original factorial model) The corresponding emission model

is defined as follows:

xt = [O1s1
t , O

2s2
t , . . . , O

KsKt]Rt + ε, ∀t ∈ [T], (3.7)

where the only modification to the standard factorial model is the addition of the switch

variable sk ∈ {0, 1} which denotes a binary switch variable assigned to the k’th factor: If sk

is equal to one, then the k’th factor is active. Otherwise the k’th factor does not contribute

to the observation at time step t. Alternatively, we can represent the activation variables

Rt = [(r1
t)
>, (r2

t)
>, . . . , (rKt)>]>, by adding the zero vector to the domain of indicators for

each factor such that rkt ∈ e1:M(k) ∪ 0M(k) , ∀k ∈ [K].

3.3.1 Identifiability of the modified model

Lemma 3.5. Let Rc ∈ RKM×Call denote a matrix which consists of all possible combinations

Rt can take for an RFM. We conclude that rank(Rc) = KM . For example for M = 2,

47

K = 2 case, Rc =

e1 e1 e2 e2 e1 e2 0M 0M

e1 e2 e1 e2 0M 0M e1 e2

.

Proof of Theorem 3.5. Following the definition given for RFM above, we can see that columns

of the new combinations matrix Rc contains the canonical basis set e1:MK . We therefore con-

clude that the matrix Rc has full row rank, and thus rank(Rc) = KM .

Theorem 3.3. Given an assignment matrix R ∈ RKM×T whose columns contain the canon-

ical basis set e1:MK, the emission matrix of an RFM is identifiable, meaning for all non-

equal emission matrices O1 6= O2 ∈ RL×KM , the corresponding likelihoods are not the same:∏T
t=1N (xt|O1Rt,Σ) 6=

∏T
t=1N (xt|O2Rt,Σ).

Proof of Theorem 3.3. We know from Lemma 3.5 that rank(Rc) = MK for an RFM. There-

fore from rank-nullity theorem we see that dim(null((Rc)>)) = 0. Thus (O1−O2)R 6= 0 for

O1 6= O2. �

Now that we have established that the revealing factorial model is identifiable, we describe

an efficient algorithm for estimating the emission matrix of an RFM in the next section.

3.3.2 Learning

In this section we describe an efficient (a polynomial time) algorithm to estimate the emis-

sion matrix of an RFM for the case where 1K = 2. The algorithm is described in Algorithm

3.2. The explanations for each step of this algorithm are as follows:

1.The clustering step: In the first step of Algorithm 3.2, the data items (the columns) of

the input data matrix X are clustered so as to produce an approximated version of X. The

obtained cluster centers are denoted with Xc ∈ RL×C , which we refer to as the combinations

matrix. The subsequent steps of Algorithm 3.2 are not based on an exact knowledge of the

number of cluster representatives C, and hence do not require for Xc to form a “perfect”

clustering of the input data. This is demonstrated in Figure 3.5 in the experiments section.

2.Estimating the activations for the Xc matrix: The combinations matrix Xc contains

the representatives for the distinct observations in the observation matrix X. By finding

a non-trivial solution that minimizes the error ‖Xc − XcH‖ with respect to H ∈ RC×C ,

we aim to discover tuples of columns (pairs in the K = 2 case) that sum up to an other

1We set K = 2 in the following sections in order to to simplify the narrative. The proposed algorithm is
valid for the cases where K > 2 with straightforward modifications.

48

Algorithm 3.2 Parameter estimation for RFM

Input: The observation matrix X ∈ RL×T .
Output: Estimated emission matrix Ô.

1. Apply clustering on X to get cluster centers Xc ∈ RL×C .
2. Solve the following convex optimization problem:

min
H
‖Xc −XcH‖2

F + β‖H‖1,

s.t. Hi,i = 0, for 1 ≤ i ≤ C,

H ≥ 0, (3.8)

where H ∈ RC×C . We denote the solution with Ĥ.
3. Construct a bipartite graph G from Ĥ. Let Sk denote the k’th part of G (one of the 2
disjoint node sets).

Set Ô = Xc(:, {S1 ∪ S2}).

column of Xc. The non-negativity constraint, together with the constraint that sets the

diagonal of H to zero pushes the solution away from the trivial identity matrix solution.

Furthermore, the term ‖H‖1 pushes the solution towards sparser solutions. For an example

combinations matrix Xc =
[
x+ y x y

]
, where x, y are arbitrary real vectors, the solution

to the optimization problem in Algorithm 3.2 would be Ĥ =

0 0 0

1 0 0

1 0 0

, for large enough

β. In a real world application the combinations matrix Xc would typically be contaminated

with noise, and therefore extracting pairs from it is not trivial, as we get many non-zero

elements Ĥ. We deal with this issue in the next step.

3.Reading the Ĥ matrix: The goal in this step is to construct a bi-partite graph G =

(V,E), where the vertex set V is decomposed into two disjoint sets such that V = S1 ∪ S2,

and S1 ∩ S2 = ∅, where V,E,S1,S2 ⊂ [C], by reading the graph edges from columns of

Ĥ. The model definition of the factorial model implies that the output combinations in

Xc where all factors are active (the combinations for which r1
t 6= 0 and r2

t 6= 0) would

correspond to the edges of a bi-partite graph. This is demonstrated in Figure 3.3, for an

example combinations matrix Xc = [x0, x1, y0, y1, x0 + y0, x0 + y1, x1 + y1]: We see that the

combinations x0 + y0, x0 + y1, x1 + y1 correspond to the cases where both sets contribute to

the output (We will refer to such combinations as all-active combinations). Our task in this

case is to group the emission matrix columns x0, x1, y0, y1 (which correspond to the nodes of

the graph G) in two disjoint sets S1 and S2, given the all-active combinations (edges) that

49

x0

x1

y0

y1

x0 + y0

x
0 + y1

x1 + y1

Figure 3.3: The bi-partite graph that corresponds to an example combinations matrix Xc =
[x0, x1, y0, y1, x0 + y0, x0 + y1, x1 + y1]: The bi-partition yields the emission matrices O1 =
[x0 , x1], and O2 = [y0 , y1]. Note that the combination x1 + y0 is absent from this output
instance.

we infer from the columns of the Ĥ matrix.

Typically, the output of the optimization problem in step 2 is noisy, so we can not directly

apply a standard graph bi-partition algorithm on the columns of the Ĥ matrix. Instead, we

apply the following greedy procedure: We first list all possible pairs (edges) which are formed

by the non-trivial entries of Ĥ (entries in the same column, larger than a small value). We

then eliminate all combinations which are formed by similar pairs, by using cosine similarity

as the measure. We also make sure that the edge set and the vertex set do not overlap.

After that, we form bi-partite graphs on the connected components obtained from the list of

candidate edges. We finally merge the disconnected bi-partite graphs, if there is a significant

similarity between nodes in two different sets which do not belong to the same bi-partite

graph.

The important thing to note is that, for unique bi-partition the graph G has to be con-

nected. E.g. in graph given in Figure 3.3, suppose that the edge x1 +y0 is absent. Note that,

S1 = {x0, x1},S2 = {y0, y1} and S1 = {x0, y1},S2 = {y0, x1} are both valid bi-partitions.

The overall algorithm therefore requires for proper grouping that the all-active combinations

that are present in the combinations matrix Xc to form a connected bi-partite graph. Note

that the minimum number of such combinations grows linearly in M (and not quadratically).

Note that we also require observing all nodes of the graph to be observed also (We require

observing all columns of the emission matrix in isolation - This condition can in future be

relaxed by potentially using a non-negativity constraint for the dictionary elements).

3.3.3 Experiments

In this section we demonstrate the validity and robustness of the proposed algorithm by

an unsupervised audio source separation experiment. We generate 100 sequences of clarinet-

double bass mixture using a midi-synthesizer which samples at 16kHz. In a random order,

we sample randomly chosen notes for each instrument for a prespecified range by making

sure that the observed combinations form a connected bi-partite graph. The duration of each

50

Original Mixture True Source 1 True Source 2

Reconstruction Estimated Source 1 Estimated Source 2

Figure 3.4: Example spectrograms from the source separation from the used data set. (Left-
top) Given Mixture (Left-bottom) Reconstruction as sum of two estimated sources (Middle-
top) Ground Truth Source 1 (Middle-bottom) Estimated Source 1 (Right-Top) Ground Truth
Source 2 (Right-bottom) Estimated Source 2. In this example BSS eval scores are: SDR=
17.4 SIR=22.6 SAR=19.0 (dB).

note is sampled from a normal distribution centered around 1 second and with a standard

deviation of 0.1 seconds.

For a given audio mixture, we compute a short-time Fourier transform spectrogram with

1024 point fft and hop-size 256. Before running our algorithm, we also warp the magnitude

spectrogram into Bark scale [68] for each time window to increase the distinctiveness of

observed spectra. After the separation on magnitude spectrograms on Bark scale, we map

the separated source spectrograms back to regular frequency domain. We element-wise

multiply the separated spectra with the phase of the original mixture before reconstructing

the separation results. We used k-means initialized by k-means++ [69] as the clustering

algorithm. We have set the sparsity parameter β = 1 in our experiments.

To estimate the separated magnitude source spectra X̂1, X̂2, we compute the pseudo

inverse of the estimated emission matrix Ô and multiply it with the magnitude spectrum of

the mixture to get an estimate for the activation matrix R̂ = Ô†X. We then set X̂k = ÔR̂(:

,Sk), for k ∈ 1, 2.

When we set the number of clusters parameter C = 12, we obtain average BSS-Eval

[70] SDR, SIR, SAR scores on our dataset respectively as 15.9, 21.7, and 17.4 dB. We

demonstrate an example source separation with C = 12 in Figure 3.4. As can be seen from

the figure, the separation results are very close to the ideal solution. The results on the

whole dataset for C = 12 can be found in the link http://cal.cs.illinois.edu/~cem/

sourcesep/sourcesep_images.html (We suggest using Chrome as browser, and suggest

downloading the file if it does not play on the browser.)

51

5 10 15 20 25 30 35 40 45 50

Number of clusters C

0

5

10

15

20

25

30

d
B

SIR

SDR

SAR

Figure 3.5: Average SDR, SIR and SAR values, along with corresponding error-bars obtained
on our source separation dataset.

Further on, we test the robustness of the whole algorithm to the choice of number of

clusters C. In Figure 3.5, we report the average BSS-eval scores with error-bars that shows

one standard deviation, for varying number of clusters C ranging from 6 to 49. We see that

SDR peaks around C = 12. Although we see that the scores tend to decrease after the peak

at C = 12, they do not diminish drastically, and the algorithm is still able to get a reasonable

SDR score with increasing C values. Note that SIR remains relatively steady around 20 dB.

3.3.4 Conclusions and Potential Future Improvements

We have proposed an identifiable alternative to standard Factorial model, which is more

realistic than the shared component factorial model we have proposed above. We have also

proposed an efficient algorithm to learn the parameters of this model. The algorithm is

polynomial time and only requires linearly many combinations to be observed, instead of

the exponential number of combinations required for the algorithm for the SC-FM model.

52

At its current state the algorithm requires all the nodes in the parameter bi-partite graph

to be observed. A potential future work might focus on relaxing the constraint that requires

all nodes to be observed to a subset of the nodes to be observed, by potentially using a

non-negativity constraint on the dictionary elements.

53

CHAPTER 4: LEARNING THE BASE DISTRIBUTION IN IMPLICIT
GENERATIVE MODELS

As we talked about on the introduction section, generative model learning is the task

where the goal is to learn a model to generate artificial samples which follow the underlying

probability density function of a given dataset. When the dataset comprises of scalars, or of

low dimensional (2-3 dimensions) vectors and follow a unimodal distribution, one can use a

simple density model such as the multivariate Gaussian, and fit the model to the data using

maximum likelihood. Unfortunately, such simple densities do not have sufficient expressive

power to learn the distribution of more complicated data such as natural images, or audio

because of the aforementioned high dimensional and multi-modal nature of the data.

There exists several generative model learning methods in the machine learning literature.

One way of approaching the problem is to use a linear latent variable model (LVM) such as

a mixture model [4], a latent factor model such as probabilistic PCA [71], Hidden Markov

model (HMM) [26], or linear dynamical systems [4, 11]. These models can successfully

capture the multi-modality, or low rank nature of the datasets, however they rely on linear

and tractable forward mappings, and therefore lack the expressive power of modern neural

network models.

More recently, the mainstream approaches for learning a generative model for compli-

cated datasets have been centered around models that combine latent variable modeling

with non-linear neural network mappings. One prominent example of such approaches is

Variational Autoencoders (VAEs) [15]. VAEs consider a latent variable model where the

latent representation is mapped to the observation space via a complicated neural network.

The variational expectation maximization algorithm in [15] maximize a variational lower

bound on the maximum likelihood objective. The prior distribution is typically chosen as a

simple distribution such that the KL-divergence term in the lower bound is tractable. In this

chapter we argue that using a simple prior distribution is detrimental to the overall quality

of the learned generative model.

Another very popular method that also uses a restricted latent representation is Gener-

ative Adversarial Networks (GANs) [16]. The main conceptual differences of GANs from

typical latent variable models (including VAEs) is that GANs are an implicit generative

model learning methodology [72], where the model distribution is defined without specifying

an output density. More importantly, unlike LVMs GANs do not maximize the standard

maximum likelihood objective. Instead, GANs approximate the underlying dataset density

via an additional discriminator network. Although an appealing idea, GANs are incredibly

hard to train (as evidenced by the sheer number of GAN training papers in the last few

54

years), and suffer from the predictable mode collapse problem (We delve more into this in

the main text).

In this chapter, we propose an implicit generative model learning method which maximizes

the maximum likelihood training objective. Unlike GANs, the method does not rely on

auxiliary networks such as discriminator or critic networks. For training, we propose a simple

two stage training method, which maximizes a maximum likelihood training objective, and

therefore does not suffer from the mode collapse problem that GANs are notorious for.

4.1 GENERATIVE MODEL LEARNING

The purpose of this section is to set the notation and the required concepts before we

formally introduce our algorithm. As we discussed in the introduction, the goal in generative

model learning is to approximate the underlying data density pdata(x) with the density that

our model implies, which we denote by pmodel(x|θ), where θ denotes the model parameters.

Maximum likelihood training minimizes the Kullback-Leibler (KL) divergence between the

data density and model density:

min
θ

KL(pdata(x)‖pmodel(x|θ))

= min
θ

∫
pdata(x) log

pdata(x)

pmodel(x|θ)
dx

∝min
θ
−
∫
pdata(x) log pmodel(x|θ)dx

≈max
θ

∑
n

log pmodel(xn|θ) (4.1)

where the last step is a Monte Carlo approximation to the integral, and we recognize Equation

(4.1) as the maximum likelihood objective. Note that x ∈ RL denotes the variable we use

to denote the observation space, and we use the subscripted version xn to denote the data

item with index n.

It is usually not easy to compute (not tractable) the likelihood function pmodel(x|θ) unless

we work with very simple models. In LVMs, Jensen’s inequality is used to compute a lower

55

bound to the maximum likelihood objective:

log pmodel(x|θ) = log

∫
pforward(x|h, θ)p(h)dh,

= log

∫
pforward(x|h, θ)p(h)

q(h)
q(h)dh,

≥ Eq(h)[log pforward(x|h, θ)]−KL(q(h)‖p(h)), (4.2)

where Equation (4.2) is known as the variational lower bound [4], or ELBO [14], where

h ∈ RK denotes the latent variable, and q(h) denotes the variational distribution over the

latent variable. In linear LVMs with tree structured latent variables (e.g. mixture models,

HMMs), we can use the posterior p(h|θ) as the variational distribution, because the posterior

makes this bound tight [73, 4].

In the general situation where the forward mapping is defined via a non-linear mapping,

such that pforward(x|h, θ) = pout(x; fθ(h)), where fθ(h) : RK → RL is the nonlinear determin-

istic mapping, and pout(.) is the employed noise model, computing the posterior distribution

is not analytically tractable in general. VAEs therefore use a neural network mapping for

the variational distribution qφ(h) = N (x;µφ(x), σ2
φ(x)I), where N (.) denotes the Normal

distribution and the neural network mappings µφ(x), σ2
φ(x) : RL → RK parametrize the

variational distribution.

Although the likelihood computation in VAEs is intractable and require the variational

EM algorithm described above, we argue in this chapter that the main failure mode of VAEs

is caused by the simplistic prior choices for p(h), as we demonstrate this in the experiments

section.

Another popular way to learn generative models is via GANs. GANs are implicit gener-

ative models, therefore they do not employ an output distribution pout. Namely, the data

generation mechanism is defined as follows:

h ∼ p0(h), x = fθ(h), (4.3)

where we call p0(h) the base distribution, typically chosen as a simplistic distribution such

as an isotropic Gaussian distribution, and fθ(h) is a deterministic forward mapping similar

to what we have denoted for VAEs above. GANs therefore do not employ an output dis-

tribution pout(.), but rather define pmodel(x|θ) via a deterministic transformation of the base

distribution p0(h).

In this chapter, we also argue that one of the reasons why GANs might underperform is

because of the simplistic base distribution choice. In addition to this, GANs also complicate

56

the model parameter optimization by introducing a discriminator network. GANs in their

original formulation [16], approximate the ratio between the data density and the model

density [72]:

L(θ, ξ) =
∑
n

logDξ(xn) +
∑
n′

log 1−Dξ(x
′
n′)

→
∑
n

log
pdata(xn)

pmodel(xn|θ) + pdata(xn)

+
∑
n′

log
pmodel(x

′
n′ |θ)

pmodel(x′n′|θ) + pdata(x′n′)
(4.4)

where xn denotes the training instances, and x′n denotes samples generated from the model.

The convergence to the second line (which can be recognized as the Monte Carlo estimate

for the Jensen-Shannon divergence) can be easily seen by maximizing the objective L(θ, ξ)

with respect to the discriminator parameters ξ [16]. The big conceptual problem with GANs

is that the optimization step for the generator parameters cause mode collapse. This can be

easily seen by examining the corresponding loss function. The original paper suggests the

maximization of the objective in Equation 4.5.

max
θ

∑
n′

D(x′n′), x
′
n′ ∼ pmodel(x|θ)

≈max
θ

∫
pmodel(x|θ) log

pdata(x)

pdata(x) + pmodel(x|θ)
dx, (4.5)

where we assumed that the discriminator is trained until convergence. We can see that

the objective in the last equation has a mode seeking/zero avoiding behavior, similar to

KL(pmodel(x|θ)‖pdata(x)) [74]. In practice, therefore the discriminator is not trained until

convergence, and there are various heuristics that tries to deal with mode collapse [75].

There exists several other variants of GANs which use other divergences [76], or which are

based on approximate optimal transport metrics [77, 78]. Or, some approaches use a GAN

ensemble to approximate the whole density [79].

In this chapter, we propose a much simpler approach, which optimizes a maximum like-

lihood objective using an implicit density model. The optimization does not involve an

additional discriminator, and the approach does not suffer from mode collapse since it max-

imizes a maximum likelihood objective.

We would also like to point out that there is a recent work on generative model learn-

ing, which does maximum likelihood for implicit models [80] for certain types of invertible

mappings such as convolutions. However, they do not consider general mappings as we do.

57

In addition to this we advocate using multi-modal distributions in the latent space in this

chapter.

4.2 LEARNING IN IMPLICIT GENERATIVE MODELS

We know from probability theory that in an implicit generative model as defined in Equa-

tion (4.3), the output probability density is related to the base distribution via the cumulative

density function:

pmodel(x|θ, φ) =
∂

∂x

∫
{x:fθ(h)≤x}

p0
φ(h)dh, (4.6)

where note that the base distribution is parametrized by φ. The integral in Equation (4.6)

is not tractable in general, however if we have an invertible mapping fθ(h), we can obtain an

analytical expression for the density function of the model using the following formula [81]:

pmodel(x|θ, φ) = p0
φ(f−1

θ (x))Vθ(x), (4.7)

where Vθ(x) :=
∣∣∣det

∂f−1
θ (x)

∂x

∣∣∣ =
∣∣∣det ∂fθ(h)

∂h

∣∣∣−1

, which measures the volume change due to

the transformation. It is possible to construct exactly invertible mappings using typical

neural network mappings such as matrix multiplications and convolutions. Constraining the

forward mapping to be exactly invertible is restrictive however, mainly because invertibility

only holds for transformations which do not change the dimensionality. In section 4.2.2

we describe an algorithm which maximizes the model likelihood for a general mappings for

which we also have an approximate inverse.

4.2.1 Maximum Likelihood for Implicit Generative Models

If we work with invertible forward mappings, the optimization problem for maximum

likelihood in an implicit generative model is the following:

max
θ,φ

∑
n

log pmodel(xn|θ, φ),

= max
θ,φ

∑
n

log p0
φ(f−1

θ (xn)) + log Vθ(xn), (4.8)

where the first term can be interpreted as maximizing the likelihood of the mappings f−1
θ (x)

in the base distribution space, and the volume term Vθ(x) ensures that the distribution

58

properly normalized. If we think about this objective from a sampling perspective, in order

to the generate plausible samples, the maximum likelihood objective tries to match the

samples from the base distribution with the observations mapped to the base distribution

space f−1
θ (x).

Note that in GANs, only the forward mapping parameters θ is optimized, and the base

distribution is fixed to be simple unimodal distribution. Optimizing both the forward map-

ping parameters θ and a multi-modal base distribution constitutes the main idea in this

chapter. We argue that mapping a multimodal dataset onto a unimodal base distribution is

harder to achieve than fitting a multimodal distribution on f−1
θ (x). We demonstrate this in

Figure 4.1. Using an invertible linear mapping fθ(h) = Wh, where h ∈ R2, and W ∈ R2×2,

we show that on a two dimensional mixture of Gaussians example that, if we do maximum

likelihood on the objective in Equation (4.9), we fail to map the observations to the samples

drawn from a fixed isotropic base distribution. However, as shown in Figure (b) if we set

the base distribution as a flexible distribution such as mixture of Gaussians, and learn its

parameters φ, we are able to learn a much more accurate distribution. We also show that if

we train the same mapping using the standard GAN formulation, we get the mode collapse

behavior, where only one of the Gaussians is captured in the learned distribution.

We acknowledge that in the cases where the forward mapping has the same dimensionality

in the domain and range spaces (such as the example in Figure 4.1), learning an implicit

generative model by maximizing Equation (4.9) is pointless, because we could have very well

just fitted a mixture model on the data. For this reason, in the next section we propose the

two stage learning algorithm which allows the use of forward mappings which change the

dimensionality.

4.2.2 The Two Stage Algorithm

In practice, we typically would like to have base distribution defined on a space which has

lower dimensionality than the observation space. If this is the case, then it is impossible to

have an exactly invertible mapping fθ(h). It is however possible to have an approximately

invertible forward mapping. This idea gives the hint for a very simple two stage maximum

likelihood algorithm: We first fit an auto-encoder such that the error
∑

n ‖fθ(f enc
ψ (xn))−xn‖

is minimized. Once the we are done with optimizing the autoencoder, we simply fit a base

distribution on the embeddings f enc
ψ (x). The formal algorithm is specified in Algorithm 4.1.

To see that this is a maximum likelihood algorithm, let us reconsider the likelihood function

59

−17.5 −15.0 −12.5 −10.0 −7.5 −5.0 −2.5 0.0 2.5

−15

−10

−5

0

5

10

15

20

25
observed data
generated data

−4 −2 0 2 4

−6

−4

−2

0

2

4

f^ -1}(x)
Draws from the base distribution

(a) Using a simple and fixed base distribution

−17.5 −15.0 −12.5 −10.0 −7.5 −5.0 −2.5 0.0 2.5

−2

−1

0

1

2

3

4

5

6

observed data
generated data

−4 −2 0 2 4

−6

−4

−2

0

2

4

f^{-1}()
Draws from the base distribution

(b) Learning the base distribution

−17.5 −15.0 −12.5 −10.0 −7.5 −5.0 −2.5 0.0 2.5

0

1

2

3

4

5

6

observed data
generated data

−600 −500 −400 −300 −200 −100 0 100
−400

−350

−300

−250

−200

−150

−100

−50

0 f^{-1}()
Draws from the base distribution

(c) What GAN learns

Figure 4.1: We demonstrate the differences between our proposed method and two methods
that use a simple base distributions on a two dimensional mixture of two Gaussians. (Max-
imizing (4.9) and GAN with a fixed isotropic Gaussian as base distribution). In figure (a)
we maximize the implicit model likelihood defined in (4.9) with respect to forward mapping
parameters θ. In figure (b) we fit a mixture of Gaussians for the same forward mapping
as figure (a). In figure (c) we see what GAN learns for the same dataset. In Each figure,
left plot shows the generated data overlaid on the observed dataset, and left plot show the
samples from the base distribution overlaid on the observations mapped to the observation
space (f−1

θ (x)).

Algorithm 4.1 The two stage implicit generative model learning algorithm

Consider an autoencoder such that fθ(f
enc
ψ (x)) ≈ x.

-Train the auto-encoder parameters θ, ψ such that:

min
θ,ψ

∑
n

‖fθ(f enc
ψ (xn))− xn‖

-Fit the base distribution on the latent space such that:

max
φ

∑
n

log p0
φ(f encψ (xn))

of the implicit generative model with the autoencoder:

= max
φ

∑
n

log p0
φ(f encψ (xn)) + log V (xn), (4.9)

60

where we easily see that the base distribution parameters φ are independent of the volume

term V (x). Assuming that that the autoencoder learns a mapping close to the identity, we

conclude that maximizing with respect to the base distribution parameters maximizes the

model likelihood.

Note that since the optimization for the forward mapping parameters θ, and the base

distribution is decoupled, it is easy to fit a multi-modal distribution for the base distribu-

tion on the embeddings f enc(x). One natural choice is to use a mixture distribution. We

demonstrate this on handwritten zero and one digits from the MNIST dataset [5] in Figure

4.2. We choose the dimensionality of the latent space K = 2 to be able to visualize the base

distribution space. We a three component Gaussian mixture model for this example.

Training Images Reconstructions

Generated Data

Figure 4.2: Demonstration of the two stage algorithm on a toy dataset with handwritten 0’s
and 1’s. The purpose of this figure is to give a sense on how the proposed algorithm work.
(Top row) Samples from the training set, and corresponding reconstructions. (Bottom row)
Two dimensional embeddings of the training samples are shown with blue dots. We overlay
sampled images. The solid color ellipses show the covariance components of the learned
Gaussian mixture model for the base distribution.

4.2.3 Learning Generative Models for Sequential Data

The framework we propose also offers the flexibility to learn distributions over sequences

by simply learning a sequential distribution such as HMM on the latent representations. The

61

likelihood of a sequence is expressed in Equation 4.10.

pmodel(x1:T |ψ, φ) =
T∏
t=1

p0
φ(f enc

ψ (xt)|f enc
ψ (x1:T−1))V (xt), (4.10)

where a sequence is denoted as x1:T := {x1, x2, . . . xT}. and thus f enc
ψ (x1:T−1) = {f enc

ψ (x1),

f enc
ψ (x2), . . . , f enc

ψ (xT−1)}. According to this density model, the observations x1:T are mapped

to latent space independent from each other. This suggests that we can closely follow the

two stage algorithm defined in Algorithm 4.1: Same as before we first fit the autoencoder,

and obtain the latent representations. In the second stage, instead of fitting an exchangeable

model such as a mixture model, we fit a base distribution which models the temporal struc-

ture of the latent space. Potential options for such a distribution include Hidden Markov

Models (HMMs), and RNNs, or convolutional models. In our audio experiments, we used

HMMs with Gaussian emissions.

4.3 EXPERIMENTS

4.3.1 Images

We learn generative models on the MNIST [5] (hand written digits) and CELEB-A [82]

(celebrity faces). We compare our algorithm (which we abbreviate with IML - Implicit

Maximum Likelihood), with VAE, standard GAN and Wasserstein GAN. As the main quality

metric, we compare likelihoods computed on a test set using kernel density estimator (KDE).

For the MNIST dataset, we use an invertible perceptron in our approach to demonstrate

that we can also use our approach to compute model likelihoods on the test set using the

implicit generative model density function in Equation (4.7). (Note that in general our

framework allows non-invertible mappings: We use a general convolutional autoencoder for

the CELEB-A dataset) The invertible perceptron we use for the MNIST dataset is defined

as follows:

h1 = tanhinvt (Linear[K, 600](h)) ,

x =σinvt (Linear[600, 784](h1)) ,

where h ∈ RK denotes the latent representation, and Linear[L1, L2](h) = Wh + b, W ∈
RL2×L1 , b ∈ RL2 represents a linear layer (we follow the pytorch API convention to denote

the input and output dimensionalities). The invertible non-linearity functions are denoted

62

with tanhinvt(.), and σinvt(.), which respectively stand for invertible tangent-hyperbolic and

invertible sigmoid functions. We basically use the original non linearity in the invertible

regime, and a linear function in the saturation regimes. Namely, for hyperbolic tangent we

have the following function:

tanhinvt(t) =

ct− b t ≤ −1 + ε

tanh(t) |t| ≤ 1− ε

ct+ b t ≥ 1− ε

, (4.11)

We use c = 0.01, and choose the bias term b, and the threshold ε so that the function is

continuous and smooth (has a continuous first derivative). Similarly, the invertible sigmoid

function is defined as follows:

σinvt(t) =

ct− b t ≤ ε

σ(t) 0 ≤ t ≤ 1− ε

ct+ b t ≥ 1− ε

, (4.12)

Note that it is straightforward to derive the inverse functions once the parameters of the

non-linearities are set. Therefore the inverse network is defined in Equation 4.13,

h1 =σ−1
invt(Linear−1[784, 600](x)),

h = tanh−1
invt(Linear−1[600, K](h1)), (4.13)

where Linear−1[L2, L1](x) := (W>W)−1W>(x − b). Note that the parameters W , b are

shared for a given forward and inverse Linear layers. To obtain the volume term due to the

rectangular transformation, we note that the volume change due to the rectangular linear

transformation in a linear layer is given by
√

det(W>W) [83]. Therefore to the correction

term involves dividing the original pdf with this volume change (we note that the implicit

model likelihood holds, because the mapping is approximately invertible due to the first step

of the algorithm).

To do objective comparisons between models we compute Kernel density estimates (KDE)

on the test set: For each batch, we sample 1000 points from the trained models, and represent

the learned density as the sum of Kernel functions centered at these samples. We then

compute the average score for all the test set. We sample 10 such random batches and

report the mean and the standard variance in Table 4.1. We use Gaussian Kernels, with

63

variance 0.1. The KDE scores we compute for the models are defined in Equation 4.14.

KDE score =
1

NtestNsamples

Ntest∑
n=1

log

Nsamples∑
m=1

N (xtest
n ;xsample

m , 0.1I). (4.14)

Notice that for small kernel bandwidth, the above objective is tantamount to computing

the nearest neighbor distance for all test instances. To get high scores from this estimator,

the observed samples need to capture the diversity of the test instances. Also note that

this estimator is computing an estimate for KL(ptestset‖pmodel), so this metric penalizes mode

collapse.

In the left panel of Figure 4.3, we compare the KDE scores for our two-stage algorithm,

GAN, Wasserstein GAN and VAE on the MNIST dataset. We use the standard training-test

split defined in the pytorch data utilities (60000 training instances and 6000 test instances).

We try 7 different latent dimensionality K for all algorithms ranging from 20 to 140 with

increments of 20. In our algorithm, we use a GMM with 30 full-covariance components

for all K values. We see that performance drops with increasing K, however we manage

to stay better than VAEs and GANs. The performance drop is expected to happen with

increasing K, because the density estimation problem in the latent space gets more difficult

with increasing latent dimensionality. We would like to note that it possible to use a more

complicated base distribution and compensate.

In the right panel of Figure 4.3, we compare the model likelihood computed with the

implicit likelihood equation in (4.7) with the base distribution likelihood (the complete

likelihood minus the Jacobian term). The purpose of this is to examine if there is a correlation

between these quantities. As we pointed out before, our algorithm does not require an exactly

invertible mapping, and as can be seen from the figure the base distribution likelihood is

somewhat correlated with the overall model likelihood, and therefore can potentially be used

as a proxy for the complete likelihood for mappings for which we don’t know how to compute

the Jacobian term.

In Figure 4.4, we show the random nearest neighbor samples for randomly selected test

instances for all four algorithms in the top panel. We see that IML method is able to

capture the diversity of the test instances well. On top of that we see much more definition

in the generated images thanks to the multi-modal base distribution that we are using. As

we earlier illustrated in Figure 4.1, using a simplistic base distribution causes a mismatch

between the mappings to the latent space and the draws from the base distribution. Due

to the simplistic distributions used in VAEs, and GANs we see that these approaches tend

to generate more samples which do not resemble handwritten digits. We also observe that

64

quality of the samples (and nearest neighbor samples) are correlated with the KDE metric.

In Figure 4.5, we do the same nearest neighbor sample measurement on the CELEB-A

dataset. We have set the latent dimensionality as 100 for all algorithms. We cropped the

images using a face detector, and resized them to size 64 × 64 in RGB space. We used

146209 such images for training, and 10000 images for test. We see that the proposed IML

algorithm has more accurate nearest neighbor samples. We see that although the VAE is

able to generate less distorted samples than GAN and WGAN, it’s generated images contain

much more distortion than IML, potentially because of the simplistic latent representation.

The generated samples from IML contain much less distortion than GANs.

For all algorithms we used the Adam optimizer [84]. As mentioned before, in the MNIST

experiment, for IML we used the invertible network we introduced in this section. For GANs

and VAE we used a standard one hidden layer perceptron with exact same sizes. Namely,

the decoders maps K dimensions into 600, and 600 dimensions then gets mapped into 784

dimensions (MNIST images are of size 28 × 28). We use the mirror image encoder for the

VAE, that is we map 784 dimensions to 600, and that gets mapped into K dimensional

vectors for the mean and variance of the posterior. For the CELEB-A dataset, we used

a 5 layer convolutional encoders and decoders (We used the basic DC-GAN [85] generator

architecture for all algorithms, with exact same parameter setting - only with the exception

that for VAE the latent representations are obtained without passing through ReLU in order

not to allow negative values as we use isotropic Gaussian as the prior). For W-GAN would

like to point that we used to code published by the authors with the default parameter

set-up. For GAN and VAE our code is based on code provided for pytorch examples.

Table 4.1: Best KDE scores on test set for MNIST and CELEB-A datasets using 4 differ-
ent algorithms. We show the mean (larger is better), and standard deviation of the KDE
likelihoods, over 10 batches of random samples consisting of 1000 samples each.

Algorithm MNIST CELEB-A

IML 144.5± 0.7 −8340± 33

VAE 117.7± 2.7 −10493± 66

GAN −7.6± 2.3 −11835± 71

WGAN 61.2± 1.6 −12993± 105

65

20 40 60 80 100 120 140

K (la(en(space dimensionali(y)

−100

−50

0

50

100

150

KD
E
li
el
ih
oo

d

KDE li elihood wr(. K

IML des
VAE des
GAN des
W-GAN kdes

20 40 60 80 100 120 140

K (latent space dimensionality)

−8000

−6000

−4000

−2000

0

2000

Lo
g.
 L
i
el
ih
oo

d

Overall model and base dist. li elihoods
IML model logl
IML gmm logl

Figure 4.3: KDE likelihood with respect to the dimensionality of the latent space K on
the MNIST dataset. (left) Violin plots which show the distributions for the KDE scores.
(right) Computing the model likelihood using the inverse mapping.

Test

IML

VAE

GAN_W

GAN

GAN VAE IML

Figure 4.4: Samples from the MNIST dataset. (top) Generated nearest neighbor samples
(nearest to test instances which are shown on the top row) for four different algorithms.
(bottom-left) Random images generated with a GAN, (bottom-middle) Random images
generated with a VAE, (bottom-right) Generated Samples with IML, samples from the
same cluster are grouped together.

4.3.2 Audio

To show that our algorithm can be used to learn a generative model for sequential data,

we experiment with generating speech and music in the waveform domain. In all datasets,
66

Test

IML

VAE

GAN

WGAN

GAN VAE IML

Figure 4.5: Samples from the CELEB-A dataset. (top) Generated nearest neighbor samples
(nearest to test instances which are shown above) for four different algorithms. (bottom-
left) Random images generated with GAN, (bottom-middle) Random images generated
with VAE (bottom-right) Random Samples with IML, samples from the same cluster are
grouped together.

we work with audio with 8kHz sampling rate. We dissect the audio into 100ms long chunks,

where consecutive chunks overlap by 50ms, and each window is multiplied by a Hann window.

The autoencoder learns 80 dimensional latent representations for each chunk which is 800

samples long. We use three layer convolutional networks both in the encoder and decoder,

where we use filters of length 200 samples.

We fit an HMM to the extracted latent representations. We use 300 HMM states, where

each state has a diagonal covariance Gaussian emission model. The random samples are

obtained by sampling from the fitted HMMs, and passing the sampled latent representation

through the decoder. To reconstruct the generated chunks as an audio waveform, we follow

the overlap-add procedure [86]: We overlap the each generated by chunk by 50 percent and

add.

As a speech experiment, we learn a generative model over digit utterances. We work with

the free spoken digit dataset [87]. As the training sequence, we give the model a concatenated

set of digit utterances. We consider the cases where the training data only contains one digit

type, and the case where the training data contains all digits. In Figure 4.6, we show the

spectrograms of generated digit utterances (this example contained all 10 digit types - we

67

used 1000 utterances for training) along with spectrograms of the training digit utterances.

Note that the generated digit utterances are generated in sequences (We generate one long

sequence which contains multiple digits). In figure 4.8 we show three cases for the one-digit

only training task. We see that we are able to learn a generative model over one digit with

a some variety.

As the music experiment, we train a model on a 2 minute long violin piece. We downloaded

the audio file for the violin etude in https://www.youtube.com/watch?v=OuSI6t54KWY.

We show the spectrogram of the first 10 seconds of the piece and our generated sequence

in Figure 4.7. We see from the spectrogram that the model is able to learn some mu-

sical structure, although there is additional background artifacts. The generated sam-

ples for the spoken digit utterances and the generated music sequence can be downloaded

and listened from the following link: https://www.dropbox.com/sh/6mvzf9ca1wl3uej/

AAAkBTdNBumU61_mnMu7epDla?dl=0 (we suggest copy and pasting the link, and watching

for spaces, also we suggest opening the files with vlc player if your native player does not

work)

0 1.5 3 4.5 6 7.5 9
Time

0
64

128
256
512

1024
2048

Hz

Original Data

0 1.5 3 4.5 6 7.5 9
Time

0
64

128
256
512

1024
2048

Hz

Generated Data

Figure 4.6: We illustrate the spectrograms for generated digits. Top figure contains the
spectrogram for the true digit utterances, and below figure contains the spectrogram of the
generated utterance.

More Samples from CELEB-A

We show more random samples in Figures 4.9, and 4.10 with IML, VAE, GAN, and Wasserstein-

GAN.

68

0 5 10 15
Time

0
64

128
256
512

1024
2048

Hz

Original Data

0 5 10 15
Time

0
64

128
256
512

1024
2048

Hz

Generated Data

Figure 4.7: Excerpt from the spectrogram of the generated sequence learned from the violin
etude.

4.3.3 Discussion

The algorithm we propose is very simple and effective. It is also principled in the sense

that it performs maximum likelihood. We would like to emphasize that, compared the GANs

the performance is much less sensitive to the network design choices and training parameters

such as the learning rate. In author’s experience, GANs are extremely sensitive to training

parameters such as the learning rate. We have observed that decoupling the training of the

base distribution from the neural network mapping makes the training much easier: In our

approach it suffices to pick a small enough learning rate so that the encoder converges, and

successfully embeds the data in a lower dimensional space.

In our experience, VAE’s seem to be easier to train (much less susceptible to hyperparame-

ter choices). However, as we have seen in the results and figures, the simplistic choice for the

base distribution results in distorted outputs. In our experiments we have used relatively

more standard models to model the latent distribution, but it is possible to use complex

methods such as Dirichlet Process Mixture models to obtain complicated base distributions.

69

0 1.5 3 4.5 6 7.5 9
Time

0
64

128
256
512

1024
2048

Hz

Original Data

0 1.5 3 4.5 6 7.5 9
Time

0
64

128
256
512

1024
2048

Hz
Generated Data

0 1.5 3 4.5 6 7.5 9
Time

0
64

128
256
512

1024
2048

Hz

Original Data

0 1.5 3 4.5 6 7.5 9
Time

0
64

128
256
512

1024
2048

Hz

Generated Data

0 1.5 3 4.5 6 7.5 9
Time

0
64

128
256
512

1024
2048

Hz

Original Data

0 1.5 3 4.5 6 7.5 9
Time

0
64

128
256
512

1024
2048

Hz

Generated Data

Figure 4.8: Spectrogram of the generated utterance sequence for digit 0 (top), digit 1
(middle), digit 6 (bottom).

70

Figure 4.9: More Random Samples with IML (left), and VAE (right) on CELEB-A dataset.

Figure 4.10: More Random Samples with GAN (left), and Wasserstein-GAN (right) on
CELEB-A dataset.

71

CHAPTER 5: GENERATIVE SEQUENCE MODELING IN AUDIO

Generative models are commonplace in audio modeling. Non-negative matrix factorization

(NMF) [88], for instance is a very popular approach which models spectrogram columns as

a linear combination of latent frequency templates. Or, recurrent neural networks have been

used in symbolic audio modeling [89], to learn distributions over MIDI data.

In this chapter, we discuss three main contributions. First, we experimentally show that

using Generative Adversarial Networks [16] in audio source separation provides increase in

source separation performance over maximum likelihoods methods such as NMF or autoen-

coders, in a speech source separation task. Our corresponding publication is [90].

Second, we argue that using convolutional neural networks for audio source separation

in spectrogram domain greatly enhances the source separation in speech-speech source sep-

aration over the base line methods such as Non-Negative Matrix Factorization [88], and

autoencoders [91] which do not model the temporal structure in spectrograms. The pro-

posed models are analogs of the convolutive NMF model [40], which use templates which

are defined over both time and frequency. Our corresponding publication is [41].

Third, we experimentally show that on four symbolic music datasets, using recurrent

neural networks with diagonal recurrent matrices improves the performance of the model.

Our corresponding paper is [44].

5.1 USING GANS IN GENERATIVE SOURCE SEPARATION

Many popular audio modeling/source separation algorithms such as Non-Negative Ma-

trix Factorization (NMF) [88], autoencoders [92], or tensor factorization models [93] are all

generative models and they are trained with maximum likelihood (ML) which require the

specification of output distributions, as showcased in the previous section. For instance,

NMF models with different loss functions (e.g. KL-NMF, Euclidean NMF, IS-NMF) [94],

actually have the same underlying mapping from latent space to observed space (same un-

derlying network), but their performances typically differ on a given dataset. The output

distribution/loss function therefore biases the model.

Generative Adversarial Networks (GANs) [16] offer a generative model learning framework,

which does not require the specification of an output distribution. GANs are able to learn the

processes which are implicitly defined via a transformation of a random variable. Namely,

the generative process is defined such that a random latent variable is mapped to the data

domain via getting transformed through a deterministic neural network. This removes the

72

bias that comes from assuming a parametric output distribution and leads to more accurate

modeling of distributions. [95]

GANs have been very popular in computer vision since their first introduction [95]. How-

ever, to the best of our knowledge, usage of GANs in the audio modeling domain has been

limited. In [96], authors train de-noising networks by using an adversarial framework. In this

section, we propose using GANs to learn a generative model over magnitude spectrogram

frames, which are used in a speech source separation task.

Source separation is the task where the goal is to decompose a given signal into additive

components which approximates the original sources as accurately as possible. In generative

source separation, we train generative models to recover the sources from an observed mix-

ture. We experimentally show on speech mixtures that an adversarially trained two layer

perceptron outperforms NMF and ML-trained autoencoders in terms of source-to-distortion

ratio [70]. In our experiments, we have observed that the original GAN formulation in [16]

is hard to train. We therefore showed the performance improvement over standard audio

models with the more recent Wasserstein-GAN formulation [77].

5.1.1 Generative Supervised Source Separation

In generative source separation, an observed mixture signal x ∈ RL is assumed to follow

the generative process below:

h1 ∼ platent(h1), s1|h1 ∼ pforward1(s1|h1)

h2 ∼ platent(h2), s2|h2 ∼ pforward2(s2|h2)

x|s1, s2 ∼ pmixture(x|s1 + s2)

where the source sk ∈ RL, k ∈ {1, 2}, follow the distribution,

psourcek(sk) =

∫
pforward(sk|hk)p(hk)dhk,

where hk ∈ RK is a latent variable with lower dimensionality, such that K < L, and

pforward(sk|hk) is the forward model for the sources. Given the sources, the mixture x is

assumed to be distributed according to the conditional distribution pmixture(x|s1 +s2), where

x is conditioned on the sum of the sources. Note that we have not yet assumed parametric

forms for the distributions above. Also note that, in our experiments we consider the case

where there are only two sources, although methods discussed can be generalized to more

sources. In the context of our audio application, mixture x here corresponds to a column of

73

a magnitude spectrogram.

The goal in source separation is to compute accurate estimates for the sources given

a mixture signal x. In supervised generative source separation, the approach is to first

train the forward models pforward1(.), pforward2(.) such that the source distributions psource1(.),

psource2(.) are approximated as accurately as possible. Given the trained models for both

sources, in testing we compute source estimates ŝ1, ŝ2 such that the conditional likelihood

pmixture(x|ŝ1 + ŝ2) is maximized (or equivalently the reconstruction error for the mixture is

minimized). In the next section, we describe the specifics on how to go through supervised

source separation with maximum likelihood training.

5.1.2 Maximum Likelihood Training for Sources

A common way to go about approximating the source distributions is through assuming

that the sources are generated by transforming a K dimensional latent variable h ∼ platent(h),

through a non-linear mapping (such as a neural network) fθ(h) with parameters θ, and adding

noise to the transformed variable. This corresponds to the following generative model:

h ∼ platent(h), s|h ∼ pout(s; fθ(h)), (5.1)

where pout(.) is the output distribution which models the noise at the output of the mapping

fθ(h). E.g. When modeling spectrograms, pout(.) is usually taken as Poisson distribution,

which corresponds to the unnormalized KL divergence. Under these modeling assumptions,

the optimization problem for approximating source distribution is written as follows:

max
θ

∑
t

log

∫
PO(st; fθ(h))p(h)dh, (5.2)

where the integral over the latent variable h is intractable in the general case. Using vari-

ational auto-encoder framework in [15], the objective in expression (5.2) can be maximized

by computing a variational lower bound.

In practice however, especially in audio modeling, the integral over the latent variable h

is not computed, and only the conditional forward model pforward(s|h) is learnt, by simul-

taneously optimizing over the forward model parameters and the latent variables. This is

written as the following optimization problem:

max
θ,h

∑
t

logPO(st; fθ(h)), (5.3)

74

If fθ(h) = Wh, where W,h ≥ 0, then this formulation corresponds to the widely used

Non-Negative Matrix Factorization (NMF) model [88, 97, 94]. It is also possible to include

the latent variable estimation part in the model with an auto-encoder. This results in the

following optimization problem:

max
θ,θenc

∑
t

logPO(st; fθ(f
enc
θenc(s

t))), (5.4)

where f enc
θenc(.) : RL → RK , is the encoder, and fθ(.) : RK → RL is decoder part. In [92],

fθ(h) = log(exp(W1h) + 1), and f enc
θenc(s) = log(exp(W2s) + 1) is used.

The conceptual problem with the training objectives discussed in this section is that by

picking a specific output distribution, we are sacrificing from the generality of the approx-

imated source distributions. To remove this assumption, in this section we use generative

adversarial networks, which is a neural network framework for learning generative models

without explicitly specifying an output distribution when training the generator network.

5.1.3 Adversarial Training for Sources

We have seen in the previous section that maximum likelihood training involves a para-

metric assumption for the output distribution. As an alternative, in this section we propose

using an implicit generative model in training, which does not require an explicit loss func-

tion. An implicit generative model for the sources can be specified as follows:

h ∼ platent(h), s = fθ(h), (5.5)

where the source s is deterministically related to the latent variable h, unlike the source

models in the previous section. This process implies an intractable density function pmodel(.)

for s in the general case where fθ(h) is a complicated non-linear mapping such as a neural

network. Learning under implicit generative models is a currently a very active field of

research [72]. One way to attack this problem is to use discriminator function Dξ(.) which

aims to distinguish between the samples generated from the model and the training instances.

The goal in training then becomes to generate samples using the process in expression (5.5) so

that, the discriminator Dξ(.) becomes unable to distinguish between the generated samples

and the training data. This described setup is known as a generative adversarial network

(GAN) [16], and the corresponding minimax game is specified as follows:

min
θ

max
ξ

Es logDξ(s) + Eh log(1−Dξ(fθ(h))), (5.6)

75

This expression can be recognized as the sum of Bernoulli log-likelihoods, where Dξ(.) tries to

maximize by outputting 1 for the training data s, and outputting 0 for the generated samples

fθ(h). The generator however tries to minimize the expression by fooling the discriminator.

It can be shown that under some assumptions this scheme minimizes the Jensen-Shannon di-

vergence between the actual source distribution psource(.) and the model distribution pmodel(.).

However in practice, this scheme is unstable, and usually suffers from the mode collapse prob-

lem where the learnt distribution pmodel(.) only captures a subset of the actual sample space.

[95]. This is unfortunately not acceptable for our source separation application.

An alternate formulation known as the Wasserstein-GAN, alleviates the mode collapse

problem by minimizing the Wasserstein-1 distance between the learnt and data distributions,

which results in smooth gradients [77]. Authors show that this can be achieved with following

minimax game:

min
θ

max
ξ∈W

EsDξ(s)− EhDξ(fθ(h)), (5.7)

where W denotes the set for parameters ξ for which Dξ(.) will be γ-Lipschitz continuous,

for some γ. In the algorithm provided in the paper, this constraint is achieved by clipping

the weights ξ. In our experiments, Wasserstein GANs showed significant improvement over

the original GAN formulation. Note that Dξ(.) is referred to as critic in this formulation.

5.1.4 Testing

After training the forward models for each source, given a test mixture, the estimates ŝ1,

ŝ2 for the sources is obtained by minimizing the reconstruction error via finding the optimal

latent variables as inputs to the forward mappings:

ĥ1, ĥ2 = arg max
h1,h2

log pmixture(x; fθ̂1(h1) + fθ̂2(h2)), (5.8)

and then we get the estimates for the sources by setting ŝ1, ŝ2 = fθ̂1(ĥ1), fθ̂2(ĥ2), where θ̂1,

θ̂2 denote the trained network parameters.

An extra benefit we get by training our generative models with GANs is that, in addition

to the generator networks fθ̂k(.), we also get discriminators/critics Dξ̂k
(.). We can therefore

use them in the separation stage to score how much the obtained source looks like the

instances in training set. We also noticed that using a smoothing term to enforce smooth

first difference across time improves the quality of the estimated sources for both GANs and

Maximum likelihood based auto-encoders. Therefore, the optimization for separating the

76

sources, given T mixture spectrogram columns x1:T , becomes the following:

max
h1:T1 ,h1:T2

1

T

T∑
t=1

log pmixture(x
t; fθ̂1(h

t
1) + fθ̂2(h

t
2))

+
α

T

T∑
t=1

(
Dξ̂1

(fθ̂1(h
t
1)) +Dξ̂2

(fθ̂2(h
t
2))
)

+
β

T − 1

T−1∑
t=1

(
2∑

k=1

‖fθ̂k(h
t+1
k)− fθ̂k(h

t
k)‖1

)
, (5.9)

where α is a trade-off scalar between the reconstruction quality and discriminator/critic

score. In our experiments we fixed α = 0.1, but it can also potentially be optimized on a

validation set. For the smoothing term, we used β = 0.1. Finally, note that for magnitude

spectrograms it is very common to use Poisson distribution for pmixture(.).

5.1.5 Empirical Results

To show the validity of using GANs in source separation, we compare adversarially trained

networks with auto-encoders trained with maximum likelihood, variational auto-encoders

and NMF.

The experiment set-up is as follows: We form mixtures of male and female speaker ut-

terances and corresponding training data from the TIMIT speech corpus [98]. To form the

training/test data pairs, we randomly pick male and female speaker pairs from the train

folder of the TIMIT corpus. Each speaker has 10 available utterances. For both speakers, of

the 10 available utterances, we use 9 for training and 1 for testing. The resulting training set

for each source is around 30 seconds long. The selected test utterances are around 3 seconds,

and the mixture signal is obtained by mixing the test utterances at 0 dB. We form 25 such

mixtures/training sets and test each algorithm on these randomly selected sets (The speaker

pairs are the same across algorithms). As the preprocessing step, we compute Fourier spec-

trograms of the utterances. We use 1024 point FFT, and a hop size of 256 samples. The

learning and source separation are performed on the columns (Fourier magnitude vectors

for each time window) of the magnitude spectrograms. When reconstructing the separated

sources in the time domain, we use the Wiener filtering equation:

ŝtime
k = ISTFT(

ŝk
ŝ1 + ŝ2

� x� xphase), for k ∈ {1, 2}, (5.10)

where x and xphase are respectively the magnitude and phase spectrograms of the mixture.

77

NMF GAN Gaussian
 WGAN

AE
 WGAN

MLAE VAE

−2

0

2

4

6

8

10

12
dB

SDRs

NMF GAN Gaussian
 WGAN

AE
 WGAN

MLAE VAE
0

2

4

6

8

10

12

14

16

dB

SIRs

NMF GAN Gaussian
 WGAN

AE
 WGAN

MLAE VAE

4

6

8

10

12

14

dB

SARs

Figure 5.1: The distributions of the BSS eval scores for our speech source separation experi-
ment. Acronyms for each algorithm are indicated below each violin plot. In order from left to
right the algorithms are ordered as: NMF, Standard GAN, Wasserstein GAN with Gaussian
inputs, Autoencoding Wasserstein GAN, Autoencoder trained with maximum likelihood,
and Variational Autoencoder. Each violin shows the distribution of the corresponding score
in dB over different speaker pairs. The subplots are organized as follows: Left: SDR scores,
Middle: SIR scores, Right: SAR scores.

The magnitude spectra for the estimated sources are denoted by ŝ1 and ŝ2. The estimated

time domain signal is denoted by ŝtime
k . The division and the multiplication � are both

element wise, and ISTFT(.) designates the inverse short time Fourier transform operation

to get the time domain signal from a complex Fourier spectrogram. We obtain results with

the following models:

• KL-NMF model.

• The auto-encoder model suggested in [92], trained with maximum likelihood using a

Poisson likelihood (equivalently unnormalized KL divergence).

• Standard GAN with Gaussian random inputs.

• Wasserstein GAN with Gaussian random inputs.

• Autoencoding Wasserstein GAN, where instead of Gaussian random inputs, we feed

the training samples to the generator network.

• Variational Autoencoder with Gaussian prior on the latent variable, as in [15], and

Poisson likelihood at the output.

For all GANs, we used the following architecture for the generator:

fθ(h) = SP(W2SP(W1h)), (5.11)

where SP(.) is the soft-plus nonlinearity, such that SP(x) = log(exp(x) + 1). Note that

we have omitted the bias terms from the equation to reduce clutter. For all GANs with

78

Gaussian random inputs, we used 513 dimensional inputs h (This is the dimensionality of

the data items since we use 1024 point fft), and 100 hidden units. Therefore W1 was of size

100× 513, and W2 was of size 513× 100. For the auto-encoding GAN, and the auto-encoder

trained with maximum likelihood, the network architecture of generator/forward model are

exactly the same, except that the inputs are the data items s, instead of random variable

h. For the VAE, we used the encoder f enc
θenc(s) = W2ReLU(W1s), both for the mean and the

variance terms of the latent variable, where W1 was of size 100 × 513, and W2 was of size

20 × 100. For the decoder of the VAE, we used fθ(h) = SP(W3h), where W3 was of size

513× 20.

For the discriminator/critic networks of GANs, we use the following architecture:

Dξ(s) = σ(V2 tanh(V1s)), (5.12)

where V1 is of size 90× 513 (we use 90 hidden units for the discriminator), and V2 is of size

1× 90. In standard GANs, σ(.) is the sigmoid function. In Wasserstein GAN, we do not use

a non-linearity at the end of the network, and therefore σ(.) is the identity function. This

gives smoother gradients.

In training and testing, for all neural network models we use the RMSprop algorithm

[99] with a learning rate of 0.001. During the training of GANs, we do 5 iterations of

discriminator/critic updates per generator update. For all neural network models, we do

4000 training iterations, and 20000 test iterations. For Wasserstein-GAN we clip the critic

parameters at −0.01 and 0.01 for lower and upper limits respectively.

We report the BSS-eval [70] scores obtained after recovering the sources from the mixture

signals. The BSS-eval scores are Source to Distortion Ratio (SDR), Source to Interference

Ratio (SIR), and Source to Artifacts Ratio (SAR), where SDR being the summary measure

on how good the separation is. For each speaker pair, we have averaged the BSS-eval scores

of the recovered sources, and in Figure 5.1, with violin plots we show the distribution of the

averages of the two BSS-eval scores over all speaker pairs.

Experiments indicate that, The Wasserstein GAN with a Gaussian noise input outper-

forms NMF, ML auto-encoder and Variational auto-encoder in terms of source to distortion

ratio. Note that we are obtaining these results with very similar underlying networks. For

all models except VAE, we have kept the exact generator architecture defined in Equation

(5.11). We have also observed that the standard GAN formulation is not very reliable. Al-

though occasionally we have seen good SDRs with it, we have observed through inspecting

its outputs that it is not able to capture the variety in the source spectrogram distribu-

tion as good as the Wasserstein GAN, and therefore the source separation performance

79

of the standard GAN is not as good. We have also experimented with training an auto-

encoder with adversarial training, and have seen that although it is less reliable than the

Wasserstein GAN with Gaussian inputs, it is sometimes able to give great SDRs. In gen-

eral, adversarial methods give great SIRs, by losing a bit from SAR, especially compared

to the ML-autoencoder. Finally, note that the code for our experiments is available at

https://github.com/ycemsubakan/sourceseparation_misc.

5.1.6 Conclusions

We have experimentally shown that Wasserstein GANs can obtain good performance in

generative source separation. In addition to not requiring the specification of an output

distribution, GANs fit into the source separation task nicely since the discriminator/critic

functions help in source separation. We believe that there exists many research opportunities

to use GANs in the audio domain. One natural next step from the results in this section is

to extend the results shown in this section with an end-to-end generative adversarial audio

model.

5.2 CONVOLUTIVE NEURAL NETWORK MODELS FOR AUDIO SOURCE
SEPARATION

As we have discussed in the previous section, non-negative matrix factorization (NMF)

for magnitude-spectrograms is a very popular method for modeling sources for supervised

source separation applications [88, 97, 100]. However NMF based methods, e.g. the methods

we have discussed in the previous section, ignore the temporal structure between columns of

a given spectrogram. In this section we develop two neural network models which explicitly

model the temporal structure of audio spectrograms.

NMF factorizes a matrix of non-negative elements X ∈ RL×N
≥0 as a product of the basis

matrix W ∈ RL×K
≥0 and the activation matrix H ∈ RK×N

≥0 . In the case of audio signals, NMF

is applied on audio spectrograms, where the columns of W act as representative basis vectors

for the source. The rows of H indicate the activity of these basis vectors in time.

As shown in [91], it is possible to construct autoencoder analogs for NMF as follows:

Encoder: H = f enc(X) = g(W ‡X)

Decoder: X = f(H) = g(WH), (5.13)

where, X represents the input spectrogram, W ‡ represents an approximate-inverse of W and

80

g(.) : R→ R≥0 is an element-wise function that maps a real number to the space of positive

real numbers, (such as softplus or relu), and f enc(.) : RL → RK , f(.) : RK → RL respectively

denote the encoder and the decoder. As before, the columns of W act as representative basis

vectors and the corresponding rows of H indicate their respective activations. Additionally,

this interpretation enables a pathway to propose variants to this basic autoencoder stucture

by exploiting the wealth of available neural net architectures that could potentially lead to

superior separation performance. Namely, by exploiting the flexibility of neural networks,

we extend the our proposed convolutive architecture to a recurrent architecture.

Spectrograms of speech and audio signals incorporate temporal dependencies that span

multiple time frames. However, NMF and its neural network equivalent are unable to ex-

plicitly utilize these cross-frame patterns available in a spectrogram. In [40] a convolutive

version to NMF (conv-NMF) has been proposed, which allows spectro-temporal patterns as

representative basis elements. In this section, we develop neural network alternatives to such

convolutive NMF for supervised source separation.

Several neural network architectures have been recently proposed for supervised source

separation [101, 102, 103], where the networks are discriminatively trained. In other words,

these networks operate directly on the mixtures and separate them into individual sources.

Although discriminative training of a source separation network results in good seperation

performance, the network is restricted to work on a particular type of mixture. The convo-

lutional architecture that we discuss is generatively trained on the magnitude spectrograms

of clean utterances. Therefore, these networks are not restricted to the types of mixtures

used in training. By the virtue of flexibility of neural networks, we also propose a variant

where recurrent neural network is used.

5.2.1 Non-negative Convolutional Auto-encoders

The convolutive NMF model in [40] approximates a non-negative matrix X ∈ RL×N
≥0 as,

X(f, t) ≈
K∑
i=1

T−1∑
k=0

Wi(k, f)H(i, t− k), (5.14)

where, Wi ∈ RL×T
≥0 acts as the ith spectro-temporal basis matrix out of K such matrices

and H ∈ RK×N
≥0 contains the corresponding weights. The notation X(i, j) represents the

element of X indexed by the ith row and the jth column. We can interpret this operation as

81

Figure 5.2: Basis decomposition of a toy-illustration obtained using a CNN-CNN auto-
encoder.

a two-layer convolutional auto-encoder as follows,

Encoder layer: H(i, t) = f enc(X)(i, t) =
M−1∑
j=0

T−1∑
k=0

W ‡
i (j, k)X(j, t− k)

Decoder layer: X̂(f, t) = f(H)(f, t) =
K∑
i=1

T−1∑
k=0

Wi(k, f)H(i, t− k) (5.15)

subject to non-negativity of Wi and H. Here, we assume that the convolutional layer fil-

tersW, W ‡ have a size of L×T where, T represents the depth of the convolution (filter length)

and L denotes the height of the input matrix X (number of frequency bins). In this represen-

tation, Wi and H correspond to the ith basis matrix and the activation matrix respectively.

The filters of the first convolutional neural network (CNN) act as inverse filters in defining

the auto-encoder. We refer to this auto-encoder as the CNN-CNN auto-encoder (CCAE).

We can satisfy the non-negativity constraints by incorporating a non-linearity into the defi-

82

nitions of the encoder and the decoder. Thus,

Encoder layer: H(i, t) = f enc(X)(i, t) = g

(
M−1∑
j=0

T−1∑
k=0

W ‡
i (j, k)X(j, t− k)

)

Decoder layer: X̂(f, t) = f(H)(f, t) = g

(
K∑
i=1

T−1∑
k=0

Wi(k, f)H(i, t− k)

)
(5.16)

where, the g(.) : R → R≥0 applies an element-wise non-linearity and ensures that the

activation matrix and the reconstruction are non-negative. The block diagram of the whole

CCAE is given in Figure 5.3. In our experiments, we used the soft-plus function which is

given by the formula g(x) = log(1 + exp(x)) as the non-linearity. Using (5.16), we now

note some key points about the CCAE. (i) The output of the encoder gives the latent

representation (analog of activations in NMF) of the decomposition. (ii) The filters of the

decoder act as the spectro-temporal bases of the decomposition. (iii) We do not explicitly

apply non-negativity constraints on the bases (decoder filters). Thus, the basis matrices can

assume negative values. To train the auto-encoder, we minimize the KL-divergence between

the input spectrogram X and its reconstruction X̂ given by,

D
(
X, X̂

)
=
∑
i,j

X(i, j)log
X(i, j)

X̂(i, j)
−X(i, j) + X̂(i, j) (5.17)

X ...
∑

j

X ∗W ‡
1

∑
j

X ∗W ‡
K

∑
j

g(.) ...

H(1, :) ∗W1

H(K, :) ∗WK

+ g(.) X̂
H

H(1, :)

H(K, :)

Figure 5.3: Block Diagram of CNN-CNN Autoencoder.

Although the filters can assume negative values, the use of a non-linearity does not allow

cross-cancellations across the basis elements.

5.2.2 Practical Considerations

Having developed the CCAE equivalent to conv-NMF, we can now begin to understand

the nature of the bases and activations learned by the network. To do so, we train the

83

Figure 5.4: A subset of decoder filters obtained by training the CAE on magnitude-
spectrograms of utterances of a male speaker. This decomposition is obtained for the
configuration r = 80 and T = 8. We see that the filters resemble snippets of a speech
spectrogram.

CCAE defined by (5.16) on a simple toy example as shown in figure 5.2. The input is a

spectrogram-like image that consists of a repeating pattern of diagonal structures and has

a size of 40 × 350 pixels. We use this spectrogram to train a CCAE with filters of size

40 × 36. We also incorporate sparsity constraints on the activation, i.e., the output of the

first CNN. As shown in the figure, the basis of the decomposition learned by the decoder

CNN resembles a snippet of the input spectrogram. As expected, the decoder filters take

negative values unlike conv-NMF bases. We also see that the activation comprises a series of

impulse trains. Thus, the encoder acts as a matched-filter and identifies the points in time

when the corresponding pattern becomes active. As shown in (5.16), the time-frequency

pattern is captured by the filters of the decoder. Given the nature of the activation, we see

that the encoder attempts to learn the inverse filter to the decoder. Figure 5.4 shows the

decoder filters obtained by training the CAE on speech utterances of a male speaker. Similar

to the previous toy-example, the decoder filters learn patterns that resemble snippets of a

speech spectrogram.

Note that the encoder attempts to approximate the inverse of the decoder. From our

knowledge of linear filtering in signal processing, we know that the inverse of a finite length

filter is given by a recursive filter1 [104]. Following this analogy, in the next section we

1https://ccrma.stanford.edu/~jos/fp/Inverse_Filters.html

84

explore using a recurrent neural network in the encoder.

5.2.3 Using a recurrent filter in the encoder

In this section, the goal is to construct a recurrent encoder analogous to the convolu-

tional encoder we discussed in the previous section. We will refer to this auto-encoder as

a Recurrent-Convolutional Auto-encoder (RCAE). The potential gain of using a recurrent

encoder over a finite length convolutional encoder is due to the fact that a recurrent filter in

theory can capture arbitrarily long temporal dependencies. From a signal processing point

of view the motivation for going with a recurrent filter is that, the inverse of an finite length

filter (the convolutive basis in the encoder) is given by a recurrent filter.

The way we go about building an encoder is by passing the input through K separate

recurrent neural networks (RNNs) (Note that K was the number of filters/components in

the convolutive model). The k’th RNN recursion in the encoder is given by the following

equation:

Z(k1, t, k) = tanh

(
Kin∑
k2=1

W ‡k(k1, k2)Z(k2, t− 1, k) +
∑
l

U ‡
k
(k1, l)X(l, t)

)
, k ∈ {1, . . . , K},

(5.18)

where Z(:, t, k) ∈ RKin denotes the latent state vector of the k’th RNN at time t. We

denote the hidden state dimensionality of each RNN with Kin. The recurrent and projection

matrices of the kth RNN are respectively denoted with W ‡k, and U ‡
k
. Note that although

the given recursion corresponds to the vanilla-RNN architecture, there is no restriction on

the RNN architecture choice. In our experiments, we have used the LSTM architecture

[9, 43]. After going through the RNN recursions, the encoder output H(i, t) is obtained by

summing the RNN outputs over the first dimension:

H(i, t) =

Kin∑
k1=1

Z(k1, t, i) (5.19)

The recurrent encoder’s block diagram is given in Figure 5.5.

85

X ...
∑

k1

RNN1(X)
∑

k1

RNNK(X)
∑

k1

g(.) H

Figure 5.5: Block Diagram of RNN Encoder.

5.2.4 Overview on Solving the Supervised Source Separation Problem

The problem of supervised source separation is solved as a two-step procedure [105]. The

first step of the procedure is to learn suitable models for a given source. We refer to this step

as the training step. In the second step, we use these models to explain the contribution

of the source in a test mixture. In sections 5.2.1 and 5.2.3, we have developed the auto-

encoder architecture to learn suitable convolutive models for a given source. We now turn

our attention to the problem of using the models for separating the source in an unknown

mixture.

Given an input spectrogram X, the auto-encoder produces an approximation of the input

spectrogram which is a linear combination of its weights. We will denote to this approxima-

tion as,

X̂ = Ae(X|θ), (5.20)

where, θ denotes the weights (parameters) of the auto-encoder. For the separation procedure,

given the trained auto-encoders, (i.e., given θ1 and θ2), the goal is to identify suitable input

spectrograms X1 and X2 such that,

Xm = Ae(X1|θ1) + Ae(X2|θ2) (5.21)

In this equation, Xm represents the spectrogram of the mixture and X1, X2 denote the

separated source spectrograms. Thus, similar to NMF, this approach assumes that the

magnitude-spectrogram of the mixture is the sum of magnitude-spectrograms of the un-

derlying sources. However, in this separation procedure, we directly estimate the source

magnitude-spectrograms without estimating the latent representation. To do so, we opti-

mize for the best inputs X1, X2, in Equation (5.21) instead of training for the weights of the

network. As before, we minimize the KL divergence between mixture spectrogram Xm and

its approximation (X1 +X2).

86

Having obtained the contributions of the sources (separated spectrograms), the next step

is to transform these spectrograms back into the time domain. This is given as,

xi(t) = STFT−1

(
Xi∑
iXi

�Xm � eiΦm
)

for i ∈ {1, 2} (5.22)

Here xi(t) denotes the separated speech signal in time and Φm represents the phase of the

mixture and STFT−1 is the inverse short-time Fourier transform operation that transforms

the complex spectrogram into its corresponding time domain representation. Also, � repre-

sents the element-wise multiplication operation and the division is also element-wise.

Figure 5.6: Separation performance of convolutive models obtained using FF (blue),
CAE (green) and RCAE (red) for varying numbers of bases (K). We compare these models
to feed-forward auto-encoder based models (left) in [91]. The legend indicates the encoder
of the corresponding architectures.

5.2.5 Experiments

We now describe the experimental setup used to evaluate our auto-encoder based con-

volutive audio models. We construct a set of training and test examples using the TIMIT

corpus [98] for the evaluation. To form the examples, we randomly select a pair of male-

female speakers from the TIMIT corpus. Of the 10 utterances available for each speaker, one

utterance is randomly selected for each speaker. These two selected utterances are mixed

at 0 dB to generate the testing mixture. The remaining 9 utterances are used as training

data to construct models for the sources. In other words, these examples are used to train

87

the auto-encoders. For the evaluation, we generate 20 such mixtures and compare the mod-

els for different parameter configurations. As a pre-processing step, we apply a 1024 point

short-time Fourier transform representation with a hop of 25%. The magnitude spectrogram

is then given as an input to the network.

The networks are trained by applying a batch gradient descent training procedure and

the parameters updated using the RMSProp algorithm [99], with a learning rate and mo-

mentum of 0.001 and 0.7 respectively. The neural networks are initialized using the Xavier

initialization scheme [106].

The CNN filters are selected to be 512-point tall and 8-point wide. Thus, the convolutions

are performed only along the time axis. The number of CNN filters also decides the number

of components in the decomposition. We evaluate these models over a varying number of

CNN filters ranging from 10 to 100 uniformly in steps of 10. We compare the separation

performance in terms of median BSS eval metrics [70] i.e., signal-to-distortion (SDR), signal-

to-interference (SIR) and signal-to-artifact ratio (SAR) parameters. The code for our exper-

iments can be downloaded from https://github.com/ycemsubakan/sourceseparation_

nn.

Figure 5.6 gives the separation performance for the CCAE models (center) and RCAE

models (right) for varying values of number of filters K. We evaluate the proposed models

by comparing the separation performance to their equivalent feed-forward (FF) counterparts

(left) proposed in [91]. We plot the results in terms of a violin plot. The white dots at the

center denote the median value and the thick line denotes the inter-quartile range for each

K.

We see that the CCAE models significantly out-perform their corresponding FF versions.

This can be seen from the fact that the inter-quartile range in SDR for CAE models is

higher than the inter-quartile range of corresponding FF models for several values of K.

This improvement is a consequence of reduced interference generated by these models in

source separation (as seen in the SIR plots). Although the SAR for CCAE models degrades

slightly as compared to FF models, the significant improvement in SIR compensates for this

loss. The convolutive speech models obtained by training the RCAE also outperform the FF

auto-encoder models significantly, as seen by the median values and inter-quartile ranges.

This improvement in performance is not as pronounced as the CCAE models. However,

the experimentation serves as a definite proof of concept that exploring non-uniform auto-

encoder architectures could lead to interesting and potentially powerful algorithms for other

datasets and applications.

The performance of the convolutive models achieves a peak value for K = 80. However,

the median separation performance does not degrade significantly for other values of K.

88

Thus, the choice of K does not appear to be a very critical consideration for auto-encoder

based convolutive models unlike FF models. At the same time, the variance in SDR seems

to be dependent on K. We observe that the variance in SDR is considerably lower for higher

values of K (K ≥ 50) as seen by the separation results for both the convolutive models. For

K ≥ 80, we note that the variance continues to be relatively small even though the spread

of the violin plot is large, as shown by the inter-quartile ranges. This implies that the violin

plots spread out due to the effect of a few outlier values. In other words, auto-encoder based

convolutive audio models produce superior results consistently for a high number of CNN

filters.

5.2.6 Conclusions

We have developed and investigated the use of a auto-encoders to learn convolutive ba-

sis decompositions of speech and audio signals. The ability of the networks to include

temporal dependencies allow the auto-encoders to learn cross-frame structures in the input

spectrogram. We demonstrated that this results in a significant improvement in separation

performance as compared to feed-forward auto-encoder models. This approach also allows

for several extensions and generalizations to convolutive audio models, that can be easily

implemented using the modeling flexibility that comes with neural networks. One such ex-

tension considered in this section is the use of auto-encoders formed by a cascade of recurrent

and convolutional layers. Although these models have not outperformed the CAE models

for separation of speech mixtures, we have shown that these models are significantly superior

to feed-forward auto-encoder models.

5.3 IMPROVING RECURRENT NEURAL NETWORKS ON SYMBOLIC MUSIC
MODELING

During the recent resurgence of neural networks in 2010s, Recurrent Neural Networks

(RNNs) have been utilized in a variety of sequence learning applications with great success.

Examples include language modeling [107], machine translation [25], handwriting recognition

[108], speech recognition [109], and symbolic music modeling [89].

In this section, we empirically show that in symbolic music modeling, using a diagonal

recurrent matrix in RNNs results in significant improvement in terms of convergence speed

and test likelihood. Although diagonal RNNs were used in control literature in the past

[110, 111], to the best of our knowledge this is the first work to use them in a machine

learning task. We are aware of unitary RNNs [112], which use a unitary recurrent matrix

89

by decomposing it into unitary matrices. We do not constrain the recurrent matrix to be

unitary but only diagonal.

One interpretation of the diagonal recurrent matrix idea is via multivariate Gaussian

Mixture Models: In Gaussian mixture modeling (or Gaussian models in general) it is known

that using a diagonal covariance matrix often results in better generalization performance,

increased numerical stability and reduced computational complexity [113, 114]. We adapt

this idea to RNNs by using diagonal recurrent matrices.

We investigate the consequences of using diagonal recurrent matrices for the vanilla RNNs,

and for more popular Long Short Term Memory Networks (LSTMs) [9, 43] and Gated

Recurrent Units (GRUs) [10]. We empirically observe that using diagonal recurrent matrices

results in an improvement in convergence speed in training and the resulting test likelihood

for all three models, on four standard symbolic music modeling datasets.

5.3.1 Recurrent Neural Networks

The vanilla RNN (VRNN) recursion is defined as follows:

ht =σ1(Wht−1 + Uxt + b), (5.23)

where ht ∈ RK is the hidden state vector with K hidden units, and xt ∈ RL is the input

vector at time t (which has length L). The U ∈ RK×L is the input matrix that transforms

the input xt from an L to K dimensional space and W ∈ RK×K is the recurrent matrix

(factor) that transforms the previous state. Finally, b ∈ RK is the bias vector. Note that, in

practice this recursion is either followed by an output stage on top of ht to get the outputs

as yt = σ2(V ht) ∈ RL, or another recursion to obtain a multi-layer recurrent neural network.

The hidden layer non-linearity σ1(.) is usually chosen as hyperbolic tangent. The choice of

the output non-linearity σ2(.) is dependent on the application, and is typically softmax or

sigmoid function.

Despite its simplicity, RNN in its original form above is usually not preferred in practice

due to the well known gradient vanishing problem [42]. People often use the more involved

architectures such as LSTMs and GRUs, which alleviate the vanishing gradient issue using

gates which filter the information flow to enable the modeling of long-term dependencies.

90

5.3.2 LSTM and GRU

The GRU Network is defined as follows:

ft =σ(Wfht−1 + Ufxt),

wt =σ(Wwht−1 + Uwxt),

ct = tanh(W (ht−1 � wt) + Uxt),

ht =ht−1 � ft + (1− ft)� ct, (5.24)

where � denotes element-wise (Hadamard) product, σ(.) is the sigmoid function, ft ∈ RK

is the forget gate, and wt ∈ RK is the write gate: If ft is a zeros vector, the current state ht

depends solely on the candidate vector ct. On the other extreme where ft is a ones vector,

the state ht−1 is carried over unchanged to ht. Similarly, wt determines how much ht−1 con-

tributes to the candidate state ct. Notice that if wt is a ones vector and ft is a zeros vector,

the GRU architecture reduces to the VRNN architecture in Equation (5.23). Finally, note

that we have omitted the biases in the equations for ft, wt, and ct to reduce the notation

clutter. We will omit the bias terms also in the rest of this section.

The LSTM Network is very much related to the GRU network above. In addition to the

gates in GRU, there is the output gate ot to control the output of the RNN, and the forget

gate is decoupled into gates ft and wt, which blend the previous state and the candidate

state ct:

ft =σ(Wfht−1 + Ufxt),

wt =σ(Wwht−1 + Uwxt),

ot =σ(Woht−1 + Uoxt),

ct = tanh(Wht−1 + Uxt),

h′t =h′t−1 � ft + wt � ct,

ht =ot � tanh(h′t), (5.25)

Also notice the application of the tangent hyperbolic on h′t before yielding the output.

This prevents the output from assuming values with too large magnitudes. In [115] it is

experimentally shown that this output non-linearity is crucial for the LSTM performance.

91

5.3.3 Diagonal RNNs

We define the Diagonal RNN as an RNN with diagonal recurrent matrices. The simplest

case is obtained via the modification of the VRNN. After the modification, the VRNN

recursion becomes the following:

ht =σ1(W � ht−1 + Uxt), (5.26)

where this time the recurrent term W is a length K vector, instead of a K × K matrix.

Note that element wise multiplying the previous state ht−1 with the W vector is equivalent

to having a matrix-vector multiplication Wdiaght−1 where Wdiag is a diagonal matrix, with

diagonal entries set to the W vector, and hence the name for Diagonal RNNs. For the more

involved GRU and LSTM architectures, we also modify the recurrent matrices of the gates.

This results in the following network architecture for GRU:

ft =σ(Wf � ht−1 + Ufxt),

wt =σ(Ww � ht−1 + Uwxt),

ct = tanh(W � ht−1 � wt + Uxt),

ht =ht−1 � ft + (1− ft)� ct, (5.27)

where Wf ,Ww,W ∈ RK . Similarly for LSTM, we obtain the following:

ft =σ(Wf � ht−1 + Ufxt),

wt =σ(Ww � ht−1 + Uwxt),

ot =σ(Wo � ht−1 + Uoxt),

ct = tanh(W � ht−1 + Uxt),

h′t =h′t−1 � ft + wt � ct,

ht =ot � tanh(h′t), (5.28)

where again Wf ,Ww,Wo,W ∈ RK . One more thing to note is that the total number of

trainable parameters in this model scales as O(K) and not O(K2) like the regular full

architectures, which implies lower memory and computation requirements.

92

5.3.4 Intuition on Diagonal RNNs

In order to gain some insight on how diagonal RNNs differ from regular full RNNs func-

tionally, let us unroll the VRNN recursion in Equation 5.23:

ht = σ(Wσ(Wht−2 + Uxt−1) + Uxt)

=σ(Wσ(Wσ(Wht−3 + Uxt−2) + Uxt−1) + Uxt)

=σ(Wσ(Wσ(. . .Wσ(Wh0 + Ux1) + . . .) + Uxt−1) + Uxt) (5.29)

So, we see that the RNN recursion forms a mapping from x1:t = (x1, . . . , xt−1, xt) to ht. That

is, the state ht is a function of all past inputs and the current input. To get an intuition on

how the recurrent matrix W interacts with the inputs x1:t functionally, we can temporarily

ignore the σ(.) non-linearities:

ht =W th0 +W t−1Ux1 +W t−2Ux2 + · · ·+ Uxt

=W th0 +
t∑

k=1

W t−kUxk. (5.30)

Although this equation sacrifices from generality, it gives a notion on how the W matrix

effects the overall transformation: After the input transformation via the U matrix, the

inputs are further transformed via multiple application of W matrices: The exponentiated

W matrices act as “weights” on the inputs. Now, the question is, why are the weights

applied via W are the way they are? The input transformations via U are sensible since we

want to project our inputs to a K dimensional space. But the transformations via recurrent

weights W are rather arbitrary as there are multiple plausible forms for W .

We can now see that a straightforward alternative to the RNN recursion in equation (5.23)

is considering linear transformations via diagonal, scalar and constant alternatives for the

recurrent matrix W , similar to the different cases for Gaussian covariance matrices [114]. In

this section, we explore the diagonal alternative to the full W matrices.

One last thing to note is that using a diagonal matrix does not completely eliminate the

ability of the neural network to model inter-dimensional correlations since the projection

matrix U gets applied on each input xt, and furthermore, most networks typically has a

dense output layer.

93

5.3.5 Experiments

We trained VRNNs, LSTMs and GRUs with full and diagonal recurrent matrices on

the symbolic midi music datasets. We downloaded the datasets from http://www-etud.

iro.umontreal.ca/~boulanni/icml2012 which are originally used in the paper [89]. The

learning goal is to predict the next frame in a given sequence using the past frames. All

datasets are divided into training, test, and validation sets. The performance is measured

by the per-frame negative log-likelihood on the sequences in the test set.

The datasets are ordered in increasing size as, JSB Chorales, Piano-Midi, Nottingham

and MuseData. We did not apply any transposition to center the datasets around a key

center, as this is an optional preprocessing as indicated in [89]. We used the provided piano

roll sequences provided in the aforementioned url, and converted them into binary masks

where the entry is one if there is a note played in the corresponding pitch and time. We

also eliminated the pitch bins for which there is no activity in a given dataset. Due to the

large size of our experiments, we limited the maximum sequence length to be 200 (we split

the sequences longer than 200 into sequences of length 200 at maximum) to take advantage

of GPU parallelization, as we have noticed that this operation does not alter the results

significantly.

We randomly sampled 60 hyper-parameter configurations for each model in each dataset,

and for each optimizer. We report the test accuracies for the top 6 configurations, ranked

according to their performance on the validation set. For each random hyper-parameter

configuration, we trained the given model for 300 iterations. We did these experiments for

two different optimizers. Overall, we have 6 different models (VRNN full, VRNN diagonal,

LSTM full, LSTM diagonal, GRU full, GRU diagonal), and 4 different datasets, and 2

different optimizers, so this means that we obtained 6× 4× 2× 60 = 2880 training runs, 300

iterations each. We trained our models on Nvidia Tesla K80 GPUs.

As optimizers, we used the Adam optimizer [84] with the default parameters as specified

in the corresponding paper, and RMSprop [99]. We used a sigmoid output layer for all

models. We used mild dropout in accordance with [116] with keep probability 0.9 on the

input and output of all layers. We used Xavier initialization [106] for all cases. The sampled

hyper-parameters and corresponding ranges are as follows:

• Number of hidden layers: Uniform Samples from {2,3}.

• Number of hidden units per hidden layer: Uniform Samples from {50,. . . ,300} for

LSTM, and uniform samples from {50,. . . ,350} for GRU, and uniform samples from

{50,. . . ,400} for VRNN.

94

• Learning rate: Log-uniform samples from the range [10−4, 10−2].

• Momentum (For RMS-Prop): Uniform samples from the range [0, 1].

As noted in the aforementioned url, we used the per-frame negative log-likelihood measure

to evaluate our models. The negative log-likelihood is essentially the cross-entropy between

our predictions and the ground truth. Per frame negative log-likelihood is given by the

expression in Equation 5.31.

Per Frame Negative Log-Likelihood = − 1

T

T∑
t=1

yt log ŷt + (1− yt) log(1− ŷt), (5.31)

where yt is the ground truth for the predicted frames and ŷt is the output of our neural

network, and T is the number of time steps (frames) in a given sequence.

In Figures 5.7, 5.8, 5.9, and 5.10 we show the training iterations vs negative test log-

likelihoods for top 6 hyperparameter configurations on JSB Chorales, Piano-midi, Notting-

ham and MuseData datasets, respectively. That is, we show the negative log-likelihoods

obtained on the test set with respect to the training iterations, for top 6 hyper-parameter

configurations ranked on the validation set according to the performance attained at the

last iteration. The top rows show the training iterations for the Adam optimizer and the

bottom rows show the iterations for the RMSprop optimizer. The curves show the negative

log-likelihood averaged over the top 6 configurations, where cyan curves are for full model

and black curves are for diagonal models. We use violin plots, which show the distribution

of the test negative log-likelihoods of the top 6 configurations. We also show the average

number of parameters used in the models corresponding to top 6 configurations in the leg-

ends of the figures. The minimum negative log-likelihood values obtained with each model

using Adam and RMSprop optimizers are summarized in Table 5.1.

We implemented all models in Tensorflow [117], and our code can be downloaded from

our github page https://github.com/ycemsubakan/diagonal_rnns. All of the results

presented in this section are reproducible with the provided code.

5.3.6 Conclusions

• We see that using diagonal recurrent matrices results in an improvement in test likeli-

hoods in almost all cases we have explored in this section. The benefits are extremely

pronounced with the Adam optimizer, but with RMSprop optimizer we also see im-

provements in training speed and the final test likelihoods. The fact that this modifica-

tion results in an improvement for three different models and two different optimizers

95

Table 5.1: Minimum Negative Log-Likelihoods on Test Data (Lower is better) with Adam
and RMSProp optimizers. F stands for Full models and D stands for Diagonal models.

Dataset/Optimizer RNN-F RNN-D LSTM-F LSTM-D GRU-F GRU-D

JSB Chorales/Adam 8.91 8.12 8.56 8.23 8.64 8.21

Piano-Midi/Adam 7.74 7.53 8.83 7.59 8.28 7.54

Nottingham/Adam 3.57 3.69 3.90 3.74 3.57 3.61

MuseData/Adam 7.82 7.26 8.96 7.08 7.52 7.20

JSB Chorales/RMSprop 8.72 8.22 8.51 8.14 8.53 8.22

Piano-Midi/RMSprop 7.65 7.51 7.84 7.49 7.62 7.48

Nottingham/RMSprop 3.40 3.67 3.54 3.65 3.45 3.62

MuseData/RMSprop 7.14 7.23 7.20 7.09 7.11 6.96

0 50 100 150 200 250 300
Training iteration

8

9

10

11

12

-L
og

 L
ik

el
ih

oo
d

Vanilla RNN

F,#p=2.8e5
D,#p=2.4e5

0 50 100 150 200 250 300
Training iteration

8

9

10

11

12

-L
og

 L
ik

el
ih

oo
d

Vanilla RNN

F,#p=0.4e5
D,#p=1.8e5

0 50 100 150 200 250 300
Training iteration

8

9

10

11

12

-L
og

 L
ik

el
ih

oo
d

LSTM

F,#p=4.4e5
D,#p=3.2e5

0 50 100 150 200 250 300
Training iteration

8

9

10

11

12

-L
og

 L
ik

el
ih

oo
d

LSTM

F,#p=6.5e5
D,#p=4.2e5

0 50 100 150 200 250 300
Training iteration

8

9

10

11

12

-L
og

 L
ik

el
ih

oo
d

GRU

F,#p=9.9e5
D,#p=4.3e5

0 50 100 150 200 250 300
Training iteration

8

9

10

11

12

-L
og
 L
ik
el
ih
oo
d

GRU

F,#p=6.4e5
D,#p=2.3e5

Figure 5.7: Training iterations vs test negative log-likelihoods on JSB Chorales dataset for
full and diagonal models. The First column is for the Adam optimizer and the second column
is for RMSProp. Black curves are for the diagonal models and cyan (gray in grayscale) curves
are for full (regular) models. Top row is for VRNN, middle row is for LSTM and the bottom
row is for GRU. Legends show the average number of parameters used by top 6 models (F is
for Full, D is for Diagonal models). This caption also applies to Figures 5.8, 5.9, 5.10, with
corresponding datasets.

strongly suggests that using diagonal recurrent matrices is suitable for modeling sym-

bolic music datasets, and is potentially useful in other applications.

96

0 50 100 150 200 250 300
Training iteration

7

8

9

10

11

12

-L
og

 L
ik
el
ih
oo
d

Vanilla RNN

F,#p=4.0e5
D,#p=1.6e5

0 50 100 150 200 250 300
Training iteration

7

8

9

10

11

12

-L
og
 L
ik
el
ih
oo
d

Vanilla RNN

F,#p=1.4e5
D,#p=1.7e5

0 50 100 150 200 250 300
Training iteration

7

8

9

10

11

12
-L

og
 L

ik
el

ih
oo

d
LSTM

F,#p=6.2e5
D,#p=3.0e5

0 50 100 150 200 250 300
Training iteration

7

8

9

10

11

12

-L
og

 L
ik

el
ih

oo
d

LSTM

F,#p=4.8e5
D,#p=4.2e5

0 50 100 150 200 250 300
Training iteration

7

8

9

10

11

12

-L
og

 L
ik

el
ih

oo
d

GRU

F,#p=8.3e5
D,#p=3.0e5

0 50 100 150 200 250 300
Training iteration

7

8

9

10

11

12

-L
og
 L
ik
el
ih
oo
d

GRU

F,#p=6.9e5
D,#p=3.6e5

Figure 5.8: Training iterations vs test negative log-likelihoods on Piano-midi dataset.

0 50 100 150 200 250 300
Training iteration

3

4

5

6

7

8

-L
og
 L
ik
el
ih
oo
d

Vanilla RNN

F,#p=4.2e5
D,#p=2.5e5

0 50 100 150 200 250 300
Training iteration

3

4

5

6

7

8

-L
og

 L
ik
el
ih
oo
d

Vanilla RNN

F,#p=4.1e5
D,#p=1.9e5

0 50 100 150 200 250 300
Training iteration

3

4

5

6

7

8

-L
og

 L
ik

el
ih

oo
d

LSTM

F,#p=7.1e5
D,#p=4.4e5

0 50 100 150 200 250 300
Training iteration

3

4

5

6

7

8

-L
og
 L
ik
el
ih
oo
d

LSTM

F,#p=4.9e5
D,#p=3.6e5

0 50 100 150 200 250 300
Training iteration

3

4

5

6

7

8

-L
og

 L
ik
el
ih
oo
d

GRU

F,#p=8.3e5
D,#p=4.9e5

0 50 100 150 200 250 300
Training iteration

3

4

5

6

7

8

-L
og
 L
ik
el
ih
oo
d

GRU

F,#p=8.2e5
D,#p=2.6e5

Figure 5.9: Training iterations vs test negative log-likelihoods on Nottingham dataset.

97

0 50 100 150 200 250 300
Training iteration

7

8

9

10

11

12

-L
og
 L
ik
el
ih
oo
d

Vanilla RNN

F,#p=4.1e5
D,#p=2.8e5

0 50 100 150 200 250 300
Training iteration

7

8

9

10

11

12

-L
og
 L
ik
el
ih
oo
d

Vanilla RNN

F,#p=4.3e5
D,#p=1.9e5

0 50 100 150 200 250 300
Training iteration

7

8

9

10

11

12
-L

og
 L

ik
el

ih
oo

d
LSTM

F,#p=7.0e5
D,#p=4.0e5

0 50 100 150 200 250 300
Training iteration

7

8

9

10

11

12

-L
og

 L
ik

el
ih

oo
d

LSTM

F,#p=3.9e5
D,#p=3.0e5

0 50 100 150 200 250 300
Training iteration

7

8

9

10

11

12

-L
og
 L
ik
el
ih
oo
d

GRU

F,#p=8.2e5
D,#p=4.8e5

0 50 100 150 200 250 300
Training iteration

7

8

9

10

11

12

-L
og
 L
ik
el
ih
oo
d

GRU

F,#p=9.7e5
D,#p=2.6e5

Figure 5.10: Training iterations vs test negative log-likelihoods on MuseData dataset.

• Except the Nottingham dataset, using the diagonal recurrent matrix results in an im-

provement in final test likelihood in all cases. Although the final negative likelihoods

on the Nottingham dataset are larger for diagonal models, we still see some improve-

ment in training speed in some cases, as we see that the black curves lie below the

cyan curves for the most part.

• We see that the average number of parameters utilized by the top 6 diagonal models

is in most cases smaller than that of the top 6 full models: In these cases, we observe

that the diagonal models achieve comparable (if not better) performance by using fewer

parameters.

Overall, we provide experimental data which strongly suggests that the diagonal RNNs can

be a great alternative for regular full-recurrent-matrix RNNs.

98

CHAPTER 6: CONCLUSIONS

In this thesis we have studied various aspects of generative modeling for sequential data.

As discussed in the introduction, in my view there are three main issues one deals with when

doing generative modeling: Representation (modeling), learning paradigms (e.g. maximum

likelihood, adversarial learning etc.), and optimization. We summarize our contributions

regarding each aspect in Table 6.1:

Table 6.1: Summary of the contributions in the chapters of this thesis.

Representation Learning Paradigm Optimization

Chapter 2 N.A.
MoM learning

framework for HMMs

EM initialization

with the MoM framwork

Chapter 3 Identifiable FHMM alternatives N.A.
Proposed algorithms

for FHMM

Chapter 4
Multi modal latent

representation with IMLs

Maximum Likelihood Learning

for Implicit Models

Two-Step

optimization procedure

Chapter 5
Convolutive Architectures for Audio,

Diagonal RNNs
GANs in Audio N.A.

In more detail, our contributions specific to each chapter is as follows:

• In Chapter 2, we have studied an alternative parameter estimation method for HMMs

with special transition structures: We have proposed a method of moments (MoM)

based parameter estimation framework which is shown to be able to applicable to

mixture of HMMs, switching HMMs, HMMs with mixture emissions, and left-to-right

HMMs. We have experimentally shown that when the proposed method is used to

initialized expectation maximization algorithm, it provides speed and accuracy boost.

• In Chapter 3, we have studied identifiability of Factorial Hidden Markov models. We

have shown that the standard factorial model [13, 12] is not identifiable. We then

proposed two alternative models which are identifiable. We have also proposed efficient

algorithms for learning these alternative models.

• In Chapter 4, we have proposed an alternative generative model learning method based

on maximum likelihood. The method learns multi-modal latent representations over

the latent space, which we argue is vital for learning distributions over complicated

real data such as natural images or audio. The experiments indicate that our method

outperforms vastly popular methods such variational autoencoders [15] and GANs [16]

in terms of KDE likelihood computed on the test set. We also see that random samples

generated using our method are much less distorted compared to the aforementioned

methods.

99

• In Chapter 5, we studied audio modeling with generative models. Our contributions

are as follows: First, we proposed a convolutive neural network architecture for mod-

eling spectrograms. We have shown that it enables significant performance increase in

a speech source separation task. Second, we have argued that using an implicit gener-

ative model for the supervised source separation task increases the source separation

performance. Third, we proposed an alternative recurrent neural network architecture

for learning distributions over symbolic music representations (e.g. MIDI). The pro-

posed model is able to achieve better test likelihoods, and converges faster than the

standard models.

6.1 CONCLUDING THOUGHTS AND POTENTIAL FOLLOWUP WORK

Overall, after this thesis I think the representation issue is vital for successful learning as

I tried to show in Chapter 4. I believe that using the better model with an approximate

algorithm is better than using an approximate model with an exact algorithm (or at least

should be the goal in mind): We saw in Chapter 4 that VAEs and GANs significantly

underperform because of the simplistic assumptions on the latent representation. We also

saw in Chapter 5 that explicitly modeling the temporal structure in spectrograms improves

the source separation performance.

Unfortunately not all models are easy to learn (optimization for the model parameters

is difficult) and alternative learning paradigms are created to alleviate the learning such as

method of moments. Simpler learning algorithms such as method of moments is not useless

as we have shown that they can be used to initialize more general methods such as maximum

likelihood to make optimization easier. We have also seen that sometimes using a smaller

model such as diagonal RNNs compared to full RNNs make the optimization easier.

The factorial HMM work in Chapter 3 shows that the standard model is not identifiable,

and therefore it is a bad idea to try to learn the parameters of an FHMM. I do think that in

the tasks where we care about the latent representations using identifiable/simpler models

might help. I think that as a next step we should consider a more realistic unsupervised

source separation task with real data, perhaps by using an EM algorithm for the identifiable

models we have proposed in the chapter.

As we just alluded to, in Chapter 4, we have showed that using a multi-modal represen-

tation improves the quality of the learned distribution. I think it is a natural next step to

consider different loss functions for autoencoder part of the algorithm to get the model to

produce even higher quality samples.

100

REFERENCES

[1] McElreath, “Statistical rethinking,” https://github.com/rmcelreath/rethinking, 2016,
accessed: 2018-09-17.

[2] “!kung people,” https://en.wikipedia.org/wiki/%C7%83Kung people.

[3] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete
data via the em algorithm,” JOURNAL OF THE ROYAL STATISTICAL SOCIETY,
SERIES B, vol. 39, no. 1, pp. 1–38, 1977.

[4] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and
Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.

[5] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.

[6] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. W. Senior, and K. Kavukcuoglu, “Wavenet: A generative
model for raw audio,” CoRR, vol. abs/1609.03499, 2016. [Online]. Available:
http://arxiv.org/abs/1609.03499

[7] A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel recurrent
neural networks,” CoRR, vol. abs/1601.06759, 2016. [Online]. Available: http:
//arxiv.org/abs/1601.06759

[8] L. Theis and M. Bethge, “Generative image modeling using spatial lstms,” in
Proceedings of the 28th International Conference on Neural Information Processing
Systems - Volume 2, ser. NIPS’15. Cambridge, MA, USA: MIT Press, 2015. [Online].
Available: http://dl.acm.org/citation.cfm?id=2969442.2969455 pp. 1927–1935.

[9] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9,
no. 8, pp. 1735–1780, Nov. 1997.

[10] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated
recurrent neural networks on sequence modeling,” CoRR, 2014. [Online]. Available:
http://arxiv.org/abs/1412.3555

[11] S. Roweis and Z. Ghahramani, “A unifying review of linear gaussian models,” Neural
Comput., vol. 11, no. 2, pp. 305–345, Feb. 1999.

[12] Z. Ghahramani and M. I. Jordan, “Factorial hidden markov models,” Mach.
Learn., vol. 29, no. 2-3, pp. 245–273, Nov. 1997. [Online]. Available: http:
//dx.doi.org/10.1023/A:1007425814087

[13] Z. Ghahramani, “Factorial learning and the em algorithm,” in ADVANCES IN NEU-
RAL INFORMATION PROCESSING SYSTEMS. MIT Press, 1995, pp. 617–624.

101

[14] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley, “Stochastic variational
inference,” J. Mach. Learn. Res., vol. 14, no. 1, pp. 1303–1347, 2013. [Online].
Available: http://dl.acm.org/citation.cfm?id=2502581.2502622

[15] D. P. Kingma and M. Welling, “Auto-encoding variational bayes.” CoRR, vol.
abs/1312.6114, 2013. [Online]. Available: http://dblp.uni-trier.de/db/journals/corr/
corr1312.html#KingmaW13

[16] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C.
Courville, and Y. Bengio, “Generative adversarial nets,” in NIPS, 2014.

[17] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky, “Tensor
decompositions for learning latent variable models,” J. Mach. Learn. Res., vol. 15,
no. 1, pp. 2773–2832, Jan. 2014. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2627435.2697055

[18] A. Anandkumar, D. J. Hsu, and S. M. Kakade, “A method of moments for mixture
models and hidden markov models,” CoRR, vol. abs/1203.0683, 2012. [Online].
Available: http://arxiv.org/abs/1203.0683

[19] D. J. Hsu and S. M. Kakade, “Learning mixtures of spherical gaussians: moment
methods and spectral decompositions,” in Innovations in Theoretical Computer
Science, ITCS ’13, Berkeley, CA, USA, January 9-12, 2013, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2422436.2422439 pp. 11–20.

[20] Y. Dauphin, R. Pascanu, Ç. Gülçehre, K. Cho, S. Ganguli, and Y. Bengio, “Identifying
and attacking the saddle point problem in high-dimensional non-convex optimization,”
CoRR, vol. abs/1406.2572, 2014. [Online]. Available: http://arxiv.org/abs/1406.2572

[21] Z. Ghahramani and M. I. Jordan, “Factorial hidden markov models,” Mach.
Learn., vol. 29, no. 2-3, pp. 245–273, Nov. 1997. [Online]. Available: https:
//doi.org/10.1023/A:1007425814087

[22] G. Hinton, L. Deng, D. Yu, G. Dahl, A. rahman Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury, “Deep neural networks for
acoustic modeling in speech recognition,” Signal Processing Magazine, 2012.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in Neural Information Processing
Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds.
Curran Associates, Inc., 2012, pp. 1097–1105. [Online]. Available: http://papers.nips.
cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

[24] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. P. Kuksa,
“Natural language processing (almost) from scratch,” CoRR, vol. abs/1103.0398,
2011. [Online]. Available: http://arxiv.org/abs/1103.0398

102

[25] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural
networks,” in Proceedings of the 27th International Conference on Neural Information
Processing Systems, ser. NIPS’14. Cambridge, MA, USA: MIT Press, 2014, pp. 3104–
3112.

[26] L. R. Rabiner, “A tutorial on hidden markov models and selected applications in
speech recognition,” in PROCEEDINGS OF THE IEEE, 1989, pp. 257–286.

[27] Y. C. Subakan, J. Traa, P. Smaragdis, and D. Hsu, “Method of moments learning
for left-to-right hidden markov models,” in IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (WASPAA), 2015.

[28] S. Chiappa, “Explicit-duration markov switching models,” Found. Trends Mach.
Learn., vol. 7, no. 6, pp. 803–886, Dec. 2014. [Online]. Available: http:
//dx.doi.org/10.1561/2200000054

[29] C. Keskin, A. T. Cemgil, and L. Akarun, “Dtw based clustering to improve hand
gesture recognition,” in Proceedings of the Second International Conference on Human
Behavior Unterstanding, ser. HBU’11. Berlin, Heidelberg: Springer-Verlag, 2011.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-25446-8 8 pp. 72–81.

[30] P. Smyth, “Clustering sequences with hidden markov models,” in Advances in Neural
Information Processing Systems. MIT Press, 1997, pp. 648–654.

[31] Y. C. Subakan, J. Traa, and P. Smaragdis, “Spectral learning of mixture of hidden
markov models,” in Neural Information Processing Systems (NIPS), 2014.

[32] Y. C. Subakan, J. Traa, and P. Smaragdis, “Spectral learning of hidden markov models
with group persistence,” 2015.

[33] J. H. McDermott, “The cocktail party problem,” Current Biology, vol. 19, no. 22, pp.
R1024–R1027, 2009.

[34] Y. C. Subakan, J. Traa, P. Smaragdis, and N. Stein, “A dictionary learning approach
for factorial gaussian models,” https://arxiv.org/abs/1508.04486, 2015.

[35] Y. C. Subakan and P. Smaragdis, “A dictionary learning approach for factorial mod-
els,” in Submitted to ICASSP 2017, 2017.

[36] S. Geman and D. Geman, “Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 6, no. 6, pp. 721–
741, Nov. 1984. [Online]. Available: http://dx.doi.org/10.1109/TPAMI.1984.4767596

[37] J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Conditional random fields:
Probabilistic models for segmenting and labeling sequence data,” in Proceedings of
the Eighteenth International Conference on Machine Learning, ser. ICML ’01. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645530.655813 pp. 282–289.

103

[38] J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Bengio, “A recurrent
latent variable model for sequential data,” CoRR, vol. abs/1506.02216, 2015. [Online].
Available: http://arxiv.org/abs/1506.02216

[39] O. Fabius and J. R. van Amersfoort, “Variational Recurrent Auto-Encoders,” ArXiv
e-prints, Dec. 2014.

[40] P. Smaragdis, “Non-negative matrix factor deconvolution; extraction of multiple sound
sources from monophonic inputs.” in ICA, ser. Lecture Notes in Computer Science,
vol. 3195. Springer, 2004, pp. 494–499.

[41] S. Venkataramani, Y. C. Subakan, and P. Smaragdis, “Neural network alternatives
to convolutive audio models for source separation,” in IEEE Workshop on Machine
Learning for Signal Processing (MLSP), 2017.

[42] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural
networks,” in Proceedings of the 30th International Conference on Machine Learning
(ICML) 2013, Atlanta, GA, USA, 16-21 June 2013, 2013. [Online]. Available:
http://jmlr.org/proceedings/papers/v28/pascanu13.html pp. 1310–1318.

[43] A. Graves and J. Schmidhuber, “Framewise phoneme classification with bidirectional
LSTM and other neural network architectures,” Neural Networks, vol. 18, no. 5-6, pp.
602–610, 2005.

[44] Y. C. Subakan and P. Smaragdis, “Diagonal rnns in symbolic music modeling,” in IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA),
2017.

[45] J. Bayer and C. Osendorfer, “Learning Stochastic Recurrent Networks,” ArXiv e-
prints, Nov. 2014.

[46] A. Anandkumar, D. P. Foster, D. J. Hsu, S. M. Kakade, and Y. Liu,
“Two svds suffice: Spectral decompositions for probabilistic topic modeling and
latent dirichlet allocation,” CoRR, vol. abs/1204.6703, 2012. [Online]. Available:
http://arxiv.org/abs/1204.6703

[47] K. Pearson, “Contributions to the mathematical theory of evolution,” Philosophical
Transactions of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, vol. 185, pp. 71–110, 1894. [Online]. Available: http:
//rsta.royalsocietypublishing.org/content/185/71

[48] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Review, vol. 51, no. 3, pp. 455–500, 2009. [Online]. Available: https:
//doi.org/10.1137/07070111X

[49] D. J. Hsu, S. M. Kakade, and T. Zhang, “A spectral algorithm for learning hidden
markov models,” J. Comput. Syst. Sci., vol. 78, no. 5, pp. 1460–1480, 2012. [Online].
Available: https://doi.org/10.1016/j.jcss.2011.12.025

104

[50] P. Comon and C. Jutten, Handbook of Blind Source Separation: Independent Compo-
nent Analysis and Applications, 1st ed. Academic Press, 2010.

[51] A. P. Parikh, L. Song, and E. P. Xing, “A spectral algorithm for latent tree graphical
models,” in Proceedings of the 28th International Conference on Machine Learning,
ICML 2011, Bellevue, Washington, USA, June 28 - July 2, 2011, 2011, pp. 1065–
1072.

[52] A. P. Parikh, L. Song, M. Ishteva, G. Teodoru, and E. P. Xing, “A spectral algorithm
for latent junction trees,” CoRR, vol. abs/1210.4884, 2012. [Online]. Available:
http://arxiv.org/abs/1210.4884

[53] A. T. Chaganty and P. Liang, “Estimating latent-variable graphical models using mo-
ments and likelihoods,” in Proceedings of the 31st International Conference on Machine
Learning, ser. Proceedings of Machine Learning Research, E. P. Xing and T. Jebara,
Eds., vol. 32, no. 2. Bejing, China: PMLR, 22–24 Jun 2014, pp. 1872–1880.

[54] A. Kontorovich, B. Nadler, and R. Weiss, “On learning parametric-output
hmms,” in Proceedings of the 30th International Conference on Machine Learning,
ICML 2013, Atlanta, GA, USA, 16-21 June 2013, 2013. [Online]. Available:
http://jmlr.org/proceedings/papers/v28/kontorovich13.html pp. 702–710.

[55] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905, 2000. [Online]. Available:
https://doi.org/10.1109/34.868688

[56] K. Bache and M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

[57] A. Chaganty and P. Liang, “Spectral experts for estimating mixtures of linear regres-
sions,” in International Conference on Machine Learning (ICML), 2013.

[58] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the Theory
of NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1990.

[59] P. Brossier and P. Leveau, “2013:audio onset detection,” http://www.music-ir.org/
mirex/wiki/2013:Audio Onset Detection, June 2013, accessed: 2018-03-20.

[60] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming,
version 2.1,” http://cvxr.com/cvx, Mar. 2014, accessed: 2018-03-20.

[61] Y. C. Subakan, “Probabilistic time series classification,” M.S. thesis, Bogazici Univer-
sity, 2013.

[62] M. Aharon, M. Elad, and A. Bruckstein, “rmk-svd: An algorithm for designing over-
complete dictionaries for sparse representation,” IEEE Transactions on Signal Pro-
cessing, vol. 54, no. 11, pp. 4311–4322, Nov 2006.

105

[63] K. Kreutz-Delgado, J. F. Murray, B. D. Rao, K. Engan, T.-W. Lee, and T. J. Sejnowski,
“Dictionary learning algorithms for sparse representation,” Neural Comput., vol. 15,
no. 2, pp. 349–396, Feb. 2003.

[64] P. Comon, “Independent component analysis, a new concept?” Signal Processing,
vol. 36, no. 3, pp. 287 – 314, 1994, higher Order Statistics. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0165168494900299

[65] D. A. Spielman, H. Wang, and J. Wright, “Exact recovery of sparsely-
used dictionaries,” CoRR, vol. abs/1206.5882, 2012. [Online]. Available: http:
//arxiv.org/abs/1206.5882

[66] Z. Ghahramani, “Hidden markov models.” River Edge, NJ, USA: World Scientific
Publishing Co., Inc., 2002, ch. An Introduction to Hidden Markov Models and
Bayesian Networks, pp. 9–42. [Online]. Available: http://dl.acm.org/citation.cfm?id=
505741.505743

[67] S. Dasgupta, “Learning mixtures of gaussians,” in Proceedings of the 40th
Annual Symposium on Foundations of Computer Science, ser. FOCS ’99.
Washington, DC, USA: IEEE Computer Society, 1999. [Online]. Available:
http://dl.acm.org/citation.cfm?id=795665.796496 pp. 634–.

[68] E. Zwicker, “Subdivision of the audible frequency range into critical bands (frequen-
zgruppen),” The Journal of the Acoustical Society of America, vol. 33, no. 2, p. 248,
1961.

[69] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful seeding,” in
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
ser. SODA ’07. Philadelphia, PA, USA: Society for Industrial and Applied Mathe-
matics, 2007, pp. 1027–1035.

[70] E. Vincent, R. Gribonval, and C. Fvotte, “Performance measurement in blind audio
source separation.” IEEE Trans. Audio, Speech and Language Processing, vol. 14, no. 4,
pp. 1462–1469, 2006.

[71] M. E. Tipping and C. M. Bishop, “Probabilistic principal component analysis,” Journal
of the Royal Statistical Society, Series B, vol. 61, pp. 611–622, 1999.

[72] S. Mohamed and B. Lakshminarayanan, “Learning in Implicit Generative Models,”
ArXiv e-prints, Oct. 2016.

[73] K. P. Murphy, Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

[74] T. P. Minka, “Expectation propagation for approximate bayesian inference,” in
Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence, ser. UAI
’01. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001. [Online].
Available: http://dl.acm.org/citation.cfm?id=647235.720257 pp. 362–369.

106

[75] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen, and
X. Chen, “Improved techniques for training gans,” in Advances in Neural Information
Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett, Eds. Curran Associates, Inc., 2016, pp. 2234–2242. [Online]. Available:
http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans.pdf

[76] S. Nowozin, B. Cseke, and R. Tomioka, “f-gan: Training generative
neural samplers using variational divergence minimization,” in Advances
in Neural Information Processing Systems 29, D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, Eds. Curran Asso-
ciates, Inc., 2016, pp. 271–279. [Online]. Available: http://papers.nips.cc/paper/
6066-f-gan-training-generative-neural-samplers-using-variational-divergence-minimization.
pdf

[77] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” CoRR, vol.
abs/1701.07875, 2017. [Online]. Available: http://arxiv.org/abs/1701.07875

[78] T. Salimans, H. Zhang, A. Radford, and D. Metaxas, “Improving GANs using
optimal transport,” in International Conference on Learning Representations, 2018.
[Online]. Available: https://openreview.net/forum?id=rkQkBnJAb

[79] Y. Saatci and A. G. Wilson, “Bayesian gan,” in Advances in Neural Information
Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc., 2017, pp. 3622–3631.
[Online]. Available: http://papers.nips.cc/paper/6953-bayesian-gan.pdf

[80] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using real NVP,” CoRR,
vol. abs/1605.08803, 2016. [Online]. Available: http://arxiv.org/abs/1605.08803

[81] L. Devroye, Non-Uniform Random Variate Generation(originally published with, 1986.

[82] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” in
Proceedings of International Conference on Computer Vision (ICCV), 2015.

[83] “Volume and jacobian determinant,” https://en.wikipedia.org/wiki/Determinant, ac-
cessed: 2018-03-09.

[84] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR, vol.
abs/1412.6980, 2014. [Online]. Available: http://arxiv.org/abs/1412.6980

[85] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with
deep convolutional generative adversarial networks,” CoRR, vol. abs/1511.06434,
2015. [Online]. Available: http://arxiv.org/abs/1511.06434

[86] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 3rd ed. Upper
Saddle River, NJ, USA: Prentice Hall Press, 2009.

[87] “Free spoken digit dataset,” https://github.com/Jakobovski/
free-spoken-digit-dataset, accessed: 2018-03-09.

107

[88] P. Smaragdis and J. C. Brown, “Non-negative matrix factorization for polyphonic
music transcription,” in In IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics, 2003, pp. 177–180.

[89] N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent, “Modeling temporal depen-
dencies in high-dimensional sequences: Application to polyphonic music generation
and transcription.” in ICML, 2012.

[90] Y. C. Sübakan and P. Smaragdis, “Generative adversarial source separation,” CoRR,
vol. abs/1710.10779, 2017. [Online]. Available: http://arxiv.org/abs/1710.10779

[91] P. Smaragdis and S. Venkataramani, “A neural network alternative to non-
negative audio models,” CoRR, vol. abs/1609.03296, 2016. [Online]. Available:
http://arxiv.org/abs/1609.03296

[92] P. Smaragdis and S. Venkataramani, “A neural network alternative to non-negative
audio models,” in 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP 2017, New Orleans, LA, USA, March 5-9, 2017, 2017.
[Online]. Available: https://doi.org/10.1109/ICASSP.2017.7952123 pp. 86–90.

[93] A. T. Cemgil, U. Simsekli, and Y. C. Sübakan, “Probabilistic latent tensor factorization
framework for audio modeling,” in IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics, WASPAA 2011, New Paltz, NY, USA, October
16-19, 2011, 2011. [Online]. Available: https://doi.org/10.1109/ASPAA.2011.6082315
pp. 137–140.

[94] C. Févotte and J. Idier, “Algorithms for nonnegative matrix factorization
with the beta-divergence,” CoRR, vol. abs/1010.1763, 2010. [Online]. Available:
http://arxiv.org/abs/1010.1763

[95] I. J. Goodfellow, “NIPS 2016 tutorial: Generative adversarial networks,” CoRR, vol.
abs/1701.00160, 2017. [Online]. Available: http://arxiv.org/abs/1701.00160

[96] S. Pascual, A. Bonafonte, and J. Serrà, “SEGAN: speech enhancement generative
adversarial network,” CoRR, vol. abs/1703.09452, 2017. [Online]. Available:
http://arxiv.org/abs/1703.09452

[97] P. Smaragdis, C. Fevotte, G. J. Mysore, N. Mohammadiha, and M. Hoffman, “Static
and dynamic source separation using nonnegative factorizations: A unified view,”
IEEE Signal Processing Magazine, vol. 31, no. 3, pp. 66–75, 2014.

[98] J. S. Garofolo, L. F. Lamel, W. M. F. J. G. Fiscus, D. S. Pallett, N. L. Dahlgren, and
V. Zue, “Timit acoustic phonetic continuous speech corpus,” Philadelphia, 1993.

[99] “Root mean square propagation (rmsprop),” http://web.archive.org/web/
20080207010024/http://www.808multimedia.com/winnt/kernel.htm, accessed:
2017-April-12.

108

[100] T. Virtanen, J. F. Gemmeke, B. Raj, and P. Smaragdis, “Compositional models for au-
dio processing: Uncovering the structure of sound mixtures,” IEEE Signal Processing
Magazine, vol. 32, no. 2, pp. 125–144, 2015.

[101] E. M. Grais and M. D. Plumbley, “Single channel audio source separation using con-
volutional denoising autoencoders,” arXiv preprint arXiv:1703.08019, 2017.

[102] S. Venkataramani and P. Smaragdis, “End-to-end source separation with adaptive
front-ends,” arXiv preprint arXiv:1705.02514, 2017.

[103] P. Chandna, M. Miron, J. Janer, and E. Gómez, “Monoaural audio source separa-
tion using deep convolutional neural networks,” in International Conference on Latent
Variable Analysis and Signal Separation. Springer, 2017, pp. 258–266.

[104] J. O. Smith, Introduction to Digital Filters with Audio Applications.
http://ccrma.stanford.edu/˜jos/fp/.

[105] P. Smaragdis, B. Raj, and M. Shashanka, “Supervised and semi-supervised separation
of sounds from single-channel mixtures,” Independent Component Analysis and Signal
Separation, pp. 414–421, 2007.

[106] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, AISTATS 2010, Chia
Laguna Resort, Sardinia, Italy, May 13-15, 2010, 2010. [Online]. Available:
http://www.jmlr.org/proceedings/papers/v9/glorot10a.html pp. 249–256.

[107] T. Mikolov, M. Karafit, L. Burget, J. Cernock, and S. Khudanpur, “Recurrent neural
network based language model,” in INTERSPEECH. ISCA, 2010, pp. 1045–1048.

[108] A. Graves, “Generating sequences with recurrent neural networks,” CoRR, vol.
abs/1308.0850, 2013.

[109] A. Graves, A. Mohamed, and G. E. Hinton, “Speech recognition with deep
recurrent neural networks,” CoRR, vol. abs/1303.5778, 2013. [Online]. Available:
http://arxiv.org/abs/1303.5778

[110] C.-C. Ku and K. Lee, “Diagonal recurrent neural networks for dynamic systems con-
trol,” IEEE Transactions on Neural Networks, 1995.

[111] “Diagonal recurrent neural network based adaptive control of nonlinear dynamical
systems using lyapunov stability criterion,” ISA Transactions, vol. 67, pp. 407 – 427,
2017.

[112] M. Arjovsky, A. Shah, and Y. Bengio, “Unitary evolution recurrent neural networks,”
2015.

[113] D. Reynolds, Gaussian Mixture Models. Boston, MA: Springer US, 2015, pp.
827–832. [Online]. Available: http://dx.doi.org/10.1007/978-1-4899-7488-4 196

109

[114] E. Alpaydin, Introduction to Machine Learning, 2nd ed. The MIT Press, 2010.

[115] K. Greff, R. K. Srivastava, J. Koutńık, B. R. Steunebrink, and J. Schmidhuber,
“LSTM: A search space odyssey,” CoRR, vol. abs/1503.04069, 2015. [Online].
Available: http://arxiv.org/abs/1503.04069

[116] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network regularization,”
CoRR, vol. abs/1409.2329, 2014. [Online]. Available: http://arxiv.org/abs/1409.2329

[117] M. Abadi et al., “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, software available from tensorflow.org. [Online]. Available:
http://tensorflow.org/

110

