
PROBABILISTIC TIME SERIES CLASSIFICATION

by

Yusuf Cem Sübakan

B.S., Electrical & Electronics Engineering, Boğaziçi University, 2011

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Electrical and Electronics Engineering

Boğaziçi University

2013

ii

PROBABILISTIC TIME SERIES CLASSIFICATION

APPROVED BY:

Prof. Bülent Sankur

(Thesis Supervisor)

Assoc. Prof. Ali Taylan Cemgil

(Thesis Co-supervisor)

Assoc. Prof. Burak Acar

Assist. Prof. Mutlu Koca

Assist. Prof. Albert Ali Salah

DATE OF APPROVAL: 25.06.2013

iii

ACKNOWLEDGEMENTS

First of all, I would like to thank my thesis supervisor Bülent Sankur. Without

his infinite support and encouragement I would surely be less of a student.

Taylan Cemgil, my thesis supervisor, changed the way I think and live, by teach-

ing me in technical and non-technical aspects of research life. I owe him most of the

technical stuff I know today and I am really grateful for his patience, wisdom and men-

torship. I am genuinely thankful to F. Kerem Harmancı for introducing me to Taylan

hoca.

I would also thank Çağatay Dikici for the endless hours of technical chats, and

ping-pong games. Research is certainly more fun when you have someone to talk

casually about the stuff you are working on. I would not like to forget Ceyhun Burak

Akgül for the technical discussions we had on my first year, and the guys in pi-lab for

being fellow Bayesians nearby.

I would like to thank fellow BUSIMers, first of all Oya Çeliktutan for being

a patient listener to my problems, Erinç Dikici to answer all my paperwork related

inquiries, and being patient to my loud music, Mehmet Yamaç for being my late night

work-buddy. I also salute the other fellas. It would be wrong to forget the WCL

HAXBALL brotherhood. Life is certainly better when you have the high-school boy

spirit on with Alican Gök and Numan Su. My machinist friends, Erdem Eren and

Osman Yüksel also contributed immensely in this aspect. A word also goes to an infinite

list of musicians whose music I was listening to with my headphones, throughout my

time in BUSIM. Without their music on, I would unquestionably be less productive.

Finally, I would like to thank my high school math teacher, Özcan Baytekin. It

is due to him that I like math, and pursue a career in research.

iv

ABSTRACT

PROBABILISTIC TIME SERIES CLASSIFICATION

In this thesis, we investigate probabilistic methods for time series classification

and clustering problems. For various classification and clustering tasks, we survey

different time series models such as Markov models, hidden Markov models (HMM),

mixture of Markov models and mixture of Hidden Markov models. We also investigate

discriminative versions of Markov models and Hidden Markov models. The novel con-

tribution of this thesis is the derivation of algorithms for learning mixtures of Markov

models and mixtures of hidden Markov models. Mixture models are special latent

variable models that require the usage of local search heuristics such as Expectation

Maximization (EM) algorithm, that can only provide locally optimal solutions. In

contrast, we make use of the spectral learning algorithms, recently popularized in the

machine learning community. Under mild assumptions, spectral learning algorithms

are able to estimate the parameters in latent variable models by solving systems of

equations via eigendecompositions of matrices or tensors of observable moments. As

such, spectral methods can be viewed as an instance of the method of moments for

parameter estimation, an alternative to maximum likelihood. The popularity stems

from the fact that these methods provide a computationally cheap and local optima

free alternative to EM. We conduct classification experiments on human action se-

quences extracted from videos, clustering experiments on motion capture data and

network traffic data to illustrate the viability of our approach. We conclude that the

spectral methods are a practical and useful alternative in terms of computational effort

and solution quality to standard iterative techniques such as EM in many application

areas.

v

ÖZET

OLASILIKSAL ZAMAN SERİSİ SINIFLANDIRMA

Bu tezde, olasılıksal zaman serisi sınıflandırma ve topaklandırma yöntemleri

üzerine çalışılmıştır. Bu amaçla, Markov modelleri, saklı Markov modelleri, Markov

modeli karışımları ve saklı Markov modeli karışımları kullanılmıştır. Ayırıcı Markov

modelleri ve ayırıcı saklı Markov modelleri de incelenmiştir. Bu tezde, Markov mod-

eli karışımları ve saklı Markov modeli karışımları öğrenmek için iki yeni algoritma

öneriyoruz. Literatürde, karışım modellerinin öğrenilmesi çoğunlukla global optimum

bulma garantisi olmayan Beklenti Enbüyütme algoritması ile yapılmaktadır. Biz, ya-

pay öğrenme literatüründe son dönemde popüler olmaya başlayan spektral öğrenme

yöntemlerinin kullanılmasını öneriyoruz. Çok kuvvetli olmayan varsayımlar altında,

spektral öğrenme algoritmaları saklı değişken modelleri için sadece gözlemlenebilir mo-

ment matris veya tensörlerinin özdeğer-özvektör ayrışımını alarak parametre kestir-

imi yapma olanağı sunmaktadır. Böylelikle, spektral öğrenme yöntemleri olabilirlik

enbüyütmeye dayalı beklenti enbüyütme algoritması için alternatif olarak görülebilir.

Spektral öğrenme algoritmalarının popülerliği, hesap yükü bakımından ucuz olmaları ve

lokal optimumlara takılma sorunu olmadan parametre kestirimi yapabilmelerinden kay-

naklanmaktadır. Önerdiğimiz algoritmalarının geçerliliğini göstermek için, insan edim

videolarından çıkarılmış diziler üstünde sınıflandırma, insan hareket yakalama (motion

capture) verileri ve internet ağı verilerinden çıkarılmış diziler üstünde topaklandırma

deneyleri yapıyoruz. Neticede, önerdiğimiz spektral öğrenme tabanlı algoritmaların,

bir çok uygulama sahasında, beklenti en büyütme algoritması yerine kullanılabilecek;

yüksek topaklandırma başarısı gösteren ve hızlı algoritmalar olduğunu gösteriyoruz.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . xi

LIST OF SYMBOLS . xii

LIST OF ACRONYMS/ABBREVIATIONS . xiii

1. INTRODUCTION . 1

1.1. Introduction . 1

1.2. Background . 4

1.3. Frequently used notation . 8

2. TIME SERIES MODELS . 10

2.1. Generative Time Series Models . 10

2.1.1. Markov Model . 10

2.1.2. Hidden Markov Model . 12

2.2. Time series clustering models . 14

2.2.1. Mixture of Markov Models . 15

2.2.2. Mixture of Hidden Markov Models 17

2.3. Discriminative Time Series Models . 19

2.3.1. Discriminative Markov Model 20

2.3.2. Discriminative Hidden Markov Model 22

3. MAXIMUM LIKELIHOOD BASED LEARNING ALGORITHMS 24

3.1. Expectation Maximization Algorithm 24

3.2. Learning HMM with EM . 28

3.2.1. Inference in HMMs . 30

3.3. Learning mixture of Markov models with EM 31

3.4. Learning mixture of HMMs with EM 32

3.5. Training Discriminative Markov Model 35

3.6. Training Discriminative HMM . 36

vii

3.6.1. Inference in discriminative HMM 38

4. METHOD OF MOMENTS BASED LEARNING ALGORITHMS 40

4.1. Spectral Learning for Mixture Models 43

4.2. Spectral Learning for Hidden Markov Models 48

4.2.1. Parameter Learning in HMMs 52

4.3. Spectral Learning for Mixture of Markov Models 55

4.3.1. Spectral Learning for a Mixture of Dirichlet Distributions 59

4.4. Incorporating Spectral Learning for learning HMM mixtures 61

4.4.1. Learning Infinite Mixtures of HMMs using spectral learning . . 63

5. EXPERIMENTS AND RESULTS . 67

5.1. Sequence Clustering via mixture of Markov models 67

5.1.1. Synthetic Data . 67

5.1.2. Real World Data . 68

5.1.3. Finding number of clusters . 69

5.2. Sequence clustering via learning mixtures of HMMs 73

5.2.1. Toy Problem . 73

5.2.2. Clustering Motion Capture Data with Finite Mixture Models . . 74

5.2.3. Application: Human Action Recognition from Videos with HMMs 75

5.3. Generative vs. Discriminative Models 77

6. CONCLUSIONS . 81

6.1. Spectral learning algorithm for mixture of Markov models 81

6.2. Incorporating spectral learning in learning mixtures of Hidden Markov

models . 82

6.3. Discussion on Spectral Learning and EM 84

APPENDIX A: Generative Models and Discriminative Models 85

APPENDIX B: Gibbs Sampling for an Infinite mixture of HMMs using auxiliary pa-

rameter method . 89

B.1. Gibbs Sampling in HMM . 90

APPENDIX C: EM algorithm for learning mixture of Dirichlet distributions . 93

REFERENCES . 94

viii

LIST OF FIGURES

Figure 1.1. Illustration of sequence classification/clustering task. 1

Figure 1.2. KTH Human Action Database. 2

Figure 1.3. DAGs of Markov model and HMM. 6

Figure 1.4. DAGs of Markov models and mixture of HMMs. 6

Figure 1.5. Undirected graphs of discriminative Markov model and discrimina-

tive HMM. 7

Figure 2.1. Example sequences generated from Markov model. 11

Figure 2.2. Example observation sequence generated from a HMMwith a Gaus-

sian observation model. 14

Figure 2.3. Example observation sequence generated from a HMM with a dis-

crete observation model. 14

Figure 2.4. Example time series data generated from mixture of Markov models. 16

Figure 2.5. Transition matrices used to generate the data in Figure 2.4. 16

Figure 2.6. Example time series data generated from mixture of HMMs. . . . 18

Figure 2.7. Transition matrices and observation matrices used to generate the

data in Figure 2.6. 18

Figure 3.1. Expectation Maximization Algorithm. 26

ix

Figure 3.2. Joint distribution p(x1, x2) used in the toy problem for demonstra-

tion of the EM algorithm. 27

Figure 3.3. EM runs with two different initializations. 28

Figure 4.1. Parameter estimation from N , i.i.d. data from G(xn; a = 1, b = 5). 42

Figure 4.2. DAG of a mixture model. 44

Figure 4.3. Spectral Learning Algorithm for Mixture Model. 47

Figure 4.4. Spectral Learning Algorithm for HMM. 54

Figure 4.5. DAG of the mixture of Dirichlet distributions. 60

Figure 4.6. Algorithm for clustering sequences via spectral learning of mixture

of Dirichlet distributions. 61

Figure 4.7. Algorithm for learning a mixture of HMMs with spectral learning. 62

Figure 4.8. Learning an infinite mixture of HMMs with spectral learning . . . 65

Figure 5.1. Comparison of clustering accuracies on synthetic data. 68

Figure 5.2. Exploratory data analysis on network traffic data. 70

Figure 5.3. Finding the number of clusters on various data types. 72

Figure 5.4. Clustering handwritten L, V, 7. 73

Figure 5.5. Clustering handwritten 7 and 1. 74

x

Figure 5.6. Representative examples from clustering of “punching” and “kick-

ing” sequences. 75

Figure 5.7. Example scenes from KTH Human Action Database [1]. 76

Figure 5.8. Feature extraction process for human action videos. 77

Figure 5.9. Sequence data used in [2]. 79

Figure 5.10. Number of data items used in training vs. classification accuracy

of generative and discriminative models. 80

Figure A.1. Logistic Regression vs. Naive Bayes Classifiers. 87

xi

LIST OF TABLES

Table 5.1. Classification accuricies of three clustering algorithms on network

traffic data. 71

Table 5.2. Speed comparison of Hard EM, Soft EM and Spectral algorithm. . 75

Table 5.3. Confusion matrices obtained from human action video classification. 78

Table 5.4. Confusion matrices obtained from classification experiment for gen-

erative and discriminative Markov models. 78

xii

LIST OF SYMBOLS

A Transition matrix of a Markov chain

Ep(x)[x] Expectation of a variable x with respect to density p(x)

hn Class/cluster indicator of n’th data item

I Identity matrix

K Number of clusters in a mixture model

L Cardinality of the observation set in discrete model, dimen-

sionality of observations in a continuous model
Mx Forward messages in HMM, in matrix form

O Observation matrix

p(x) Probability distribution of a variable x

P2 Second order empirical statistics

P3 Third order empirical statistics

PO(.) Poisson distribution

N (.) Gaussian distribution

Q(θ, θ∗) EM lower bound computed with parameters θ∗

q(x) Variational distribution with variable x in EM algorithm

r1:T Latent state sequence of a hidden Markov model

x1:N Sequence dataset of N data items

x1:T Observation sequence of length T

α(rt) Forward message in HMM inference

β(rt) Backward message in HMM inference

η Vector to increase the robustness of a spectral algorithm

θ Parameter set of a particular model

λ Intensity parameter of a Poisson distribution

µ Mean parameter of a Gaussian distribution

π Initial state of a Markov chain

σ Standard deviation of a Gaussian distribution

xiii

LIST OF ACRONYMS/ABBREVIATIONS

DAG Directed Acyclic Graph

EM Expectation Maximization

HMM Hidden Markov Model

KL Kullback-Leibler Divergence

ML Maximum Likelihood Estimation

1

1. INTRODUCTION

1.1. Introduction

A significant portion of the data today can be found in sequential form. That is,

the data is in an ordered manner, capturing the sequential information in addition to

the information stored in each individual data item. Some relevant examples are speech

signals, protein sequences, hand trajectories, human action videos. In this thesis, we

are interested in classification and clustering of time series. Overall, we want to be

able to teach a machine so that it is able to assign a discrete class (or cluster) label to

an observed sequence. In Figure 1.1, we illustrate the sequence classification concept:

Each class/cluster is shaded with a distinct color. We see that the sequences within a

particular class share a common pattern. For instance, the class shaded by turquoise

is mostly formed of low frequency sinusoids and the class on the top right is mostly

formed of triangular waves.

Figure 1.1. Illustration of sequence classification/clustering task (Courtesy of A. T.

Cemgil).

2

Although the sequences in the same class seem to be similar to each other, they

are not exactly the same. There are variations in duration, amplitude, phase, and

each sequence may be contaminated by noise in various ways. Therefore, a simple

heuristic is not sufficient to implement a robust sequence classifier. In Figure 1.2, we

see some example scenes from the KTH human action database [1]. We observe that

data instances within a class can show a significant amount of variability. Note that

humans can successfully recognize human actions, despite the significant variations

present in data items. It is possible to distinguish them, since they share a common

pattern.

Figure 1.2. KTH Human Action Database [1]. Each column is reserved for a distinct

action class. Action classes from left to right: Walking, Jogging, Running, Boxing,

Hand waving and Hand Clapping.

So, the aim in these types problems should be to infer some shared structure

from the sequences, in order to be able to successfully group them in classes/clusters.

With this purpose in mind, we use probabilistic modeling in this thesis. We model the

sequences in form of probability distributions so as to be able to model the natural

variation in addition to the noise that might be present.

The probabilistic classification models can be categorized as supervised and un-

supervised models. We call the supervised classification simply as “classification” and

unsupervised classification as “clustering”, conforming with the convention in the ma-

chine learning literature. Supervised methods make use of a available labeled training

set, to “train” the models. Whereas unsupervised models, cluster the data without

3

using labeled training data. As expected, in practice supervised models yield superior

classification performances compared to the unsupervised models. However, not in all

applications a labeled training data is available. Moreover, we may be interested in

discovering novel patterns that may not be present in the training data.

The main methodological contribution of this thesis is to develop novel learning

algorithms for mixture of Markov models and mixture of hidden Markov models, which

are time series clustering models. Mixture models are special type of latent variable

models which require the usage of local search algorithms such expectation maximiza-

tion (EM) algorithm. The EM algorithm can only provide locally optimum solutions,

with indefinite number of iterations. In this thesis we propose using the recently pop-

ularized method of moments based spectral learning methods in learning mixture of

Markov models and mixture of hidden Markov models, which give local optima free

solutions by using only some observable moments.

We show that [3], the spectral learning approach in [4] as applied to mixture of

Markov models would require the usage of a fifth order observable moment. Then, we

consider an alternative learning scheme, inspired by a hierarchical Bayesian viewpoint,

that only requires the second order moment. We experimentally show on synthetic

data that, this approach is superior than the standard spectral learning algorithm in

terms of the required number of samples. We also conduct experiments on real world

data such as network traffic data and human motion capture capture data to show the

validity of our approach.

We also propose an algorithm [5], for learning a mixture of Hidden Markov mod-

els, which uses spectral learning in the parameter estimation step. This algorithm

results in a computationally cheaper alternative to a standard EM algorithm for HMM

mixtures. We also extend our algorithm in [6], to handle infinite mixture of hidden

Markov models, which do not require the user to specify the number of clusters of

HMMs before running the algorithm. We perform experiments on human action recog-

nition sequences extracted from videos and motion capture data to show that our

clustering algorithm performs well.

4

There are two types of supervised classification, which are generative and dis-

criminative classification [7]. In generative classification, we model the probability

distribution of the data. That is, we model the data generation process. In discrim-

inative models, we directly model the posterior of the class labels. This increases the

ability of the model to distinguish between classes. In this thesis, we study the differ-

ence of generative and discriminative modeling in time series modeling by surveying

Markov model, hidden Markov model and their discriminative counterparts. We dis-

cuss the differences between generative and discriminative models in more detail, in

Appendix A. A performance comparison of generative and discriminative models are

made on the sequence dataset in [2].

1.2. Background

According to the survey in [8], there are three main approaches in the litera-

ture for sequence classification, which are feature based classification, distance based

classification and model based classification.

In the feature based classification, a number of features is extracted from the

sequences. A prominent example for such a feature can be n-grams statistics. If n = 2,

this corresponds to counting the transitions (bi-gram statistics). For instance, for the

following short base sequence AGCTTCGC, the bigram sequence would be AG, GC,

CT , TT , TC, CG, GC. This would result in the following 4 × 4, bi-gram statistics

matrix:

A T G C

A 0 0 0 0

T 0 1 0 1

G 1 0 0 1

C 0 1 2 0

Then, this matrix (possibly a normalized version of this matrix so that the the

elements add up to one) is input to a generic classifier such as support vector machines,

5

or decision trees. Some examples regarding this approach can be found in [9, 10].

There are other feature extraction mechanisms such as choosing a representative short

segment from each sequence, so that a good classification accuracy is obtained [11].

These approaches may suffer from generalization issues as the extracted features alone

may not be totally representative.

The distance based classification defines a similarity measure between the se-

quences. If the sequences are of the same length, this simply amounts to computing

a valid distance function for two sequences, such as Euclidean distance [12], so that a

simple K-nearest-neighbor classifier can be applied. This approach however requires

the sequences to be of the same length. If not, a procedure called dynamic time warp-

ing can be used to align the sequences [13], which can be computationally prohibitive

for a database with large number of sequences.

The model based classification is the approach that will be taken in this thesis. In

model based classification, we define a probabilistic model to either model the genera-

tion process of the data (generative models), or simply to classify them (discriminative

model). A detailed discussion on generative and discriminative models is given in Ap-

pendix A. Let us first briefly consider the generative models we will use in this thesis

(A detailed explanation of the models is given in Chapter 2.1). Generative models

are represented using the directed acyclic graph (DAG) formalism [14]. The graphical

models of Markov model and hidden Markov model are respectively given in Figure

1.3a and Figure 1.3b. Using graphical models helps us to better understand and design

these models. Furthermore, they enable us to derive inference algorithms more easily

by making the conditional independence structure of the models explicit.

We can for instance see from Figure 1.3a that, in Markov model an observation

xt is generated conditioned on the observation xt−1, and the transition matrix A (Note

that in graphical models, the observed variables are shown with gray shaded circles.

Hollow circles represent the latent variables.). The benefit of using the graphical model

formalism is more evident when we consider a more sophisticated model such as HMM.

For instance we see that, conditioned on rt, three consecutive observations xt−1, xt and

6

x1 x2 . . . xT

π A

a. Markov Model

π A

r1 r2 . . . rT

x1 x2 . . . xT

O

b. HMM
Figure 1.3. DAGs of Markov model and HMM.

hn

x1,n x2,n . . . xTn,n

Ak

k = 1 . . .K

n = 1 . . . N

a. Mixture of Markov models

Ak

r1,n r2,n . . . rTn,n

hn

x1,n x2,n . . . xTn,n

Ok

k = 1 . . .K

k = 1 . . .K

n = 1 . . . N

b. Mixture of HMMs
Figure 1.4. DAGs of Markov models and mixture of HMMs.

xt+1 become conditionally independent. We make use of this property in inference

in Section 3.2.1, to show that the posterior p(rt|x1:T) can be computed via forward-

backward algorithm [14]. Now, let us modify these models slightly so that we obtain

unsupervised classification (clustering) models, mixture of Markov models and mixture

of HMMs respectively in Figure 1.4a and Figure 1.4b.

We see in Figure 1.4a and Figure 1.4b that by adding a cluster indicator variable

hn, and replicating the variables xt and rt, N times using the plate notation, we can

represent the generation process of a dataset consisting of N data items, each having

a Markov model or HMM structure. We can represent the discriminative versions of

7

hn

x1,n x2,n . . . xT,n

θ1:K

a. Discriminative Markov model

θ11:K

r1,n r2,n . . . rT,n

hn

x1,n x2,n . . . xT,n

θ21:K

b. Discriminative HMM
Figure 1.5. Undirected graphs of discriminative Markov model and discriminative

HMM.

Markov model and hidden Markov model using an undirected graph, which are given

respectively in Figure 1.5a and Figure 1.5b.

In discriminative models, we do not use a directed model, because unlike gen-

erative models, we do not model the distribution of the observations x1:T . We only

consider them as inputs to an energy function ψ(.), which produces a “score” of a par-

ticular class, given the observations x1:T . The details are given in Section 2.3. All in

all, we conclude that using a model based approach provides a principled approach for

modeling, learning, and consequently inference.

As mentioned in previous section, in this thesis we propose novel spectral learning

algorithms for learning mixture of Markov models and mixture of HMMs. In the

spectral learning literature, which can be considered very young, there exist algorithms

for inference in HMMs [15] and learning in multi-view mixture models [4,16]. The latter

also proposes an algorithm for learning HMMs via converting the HMM into a multi-

view mixture model. These algorithms are reviewed in Chapter 4.

In Section 4.3, using the tensor algebra defined in [17], we show that learning

a mixture of Markov models via the standard procedure in [4], requires the usage of

8

moments up to order five. So, we propose an alternative scheme based on learning

a mixture of Dirichlet distributions in Section 4.3.1 inspired by hierarchical Bayesian

modeling, which only requires a second order moment.

In Section 4.4, we propose a mixture of HMMs learning algorithm, which uses

spectral learning algorithm in [4] as a subroutine of a k-means clustering algorithm. We

also extend this algorithm to handle an infinite mixture of HMMs. In infinite mixture

models [18], we take the number of cluster to infinity, which enables the algorithm to

automatically determine the number of clusters. An infinite mixture of HMMs would

require an intractable joint integral and summation over the model parameters and

latent state sequences, as shown in Section 4.4.1. Using spectral learning for this

task yields a simple and fast learning algorithm, which is analogous to the Dirichlet-

process means algorithm in [19], an infinite analogue of the standard k-means clustering

algorithm for mixture of Gaussians.

The organization of the thesis is as follows: In Chapter 2 we introduce the time

series models that we use in the thesis. We describe the maximum likelihood based

learning algorithms in Chapter 3. We introduce the method of moments approaches in

Chapter 4. In Chapter 5, we give experimental results. We conclude with Chapter 6.

1.3. Frequently used notation

We used squared brackets [x = y] for the indicator function. If the argument

inside is true, indicator function returns 1. Otherwise, it returns 0. In this case, if x

is equal to y, the function returns 1. We use MATLAB notation to pick a particular

column or row of a matrix. For example, O(:, k) denotes the k’th column of O matrix.

Similarly, O(k, :) denotes the k’th row of O matrix. We also use the same notation

for tensors. The notation A(i, :, j) tells us to take all entries of A in second dimension

corresponding to i’th and j’th entries in first and third dimension. Throughout the

thesis, we switch between subscript notation and MATLAB notation, as necessary.

The outer product operator ⊗ is defined as (using MATLAB notation), (a⊗ b)(i, j) =

a(i)b(j), where, a ∈ RK , b ∈ RL and a⊗b ∈ RK×L. We denote a sequence of length T as

9

x1:T = {x1, x2, . . . , xT}. We use boldface x1:N = {x1,x2, . . . ,xN} to denote a sequence

dataset of N sequences. We denote the estimate as θ∗ for parameter θ. The notation

=+ is used to denote that equality is satisfied with the addition of some constants, e.g.

f(θ) =+ θ is equivalent to writing f(θ) = θ + c, where c is a constant independent of

variable θ.

10

2. TIME SERIES MODELS

In this chapter, we give the detailed definitions of generative and discriminative

models used in this thesis. We first describe the generative time series models, Markov

model and HMM. Then, we introduce time series clustering models mixture of Markov

models and mixture of HMMs. Finally we give the discriminative versions of Markov

model and HMM.

2.1. Generative Time Series Models

As discussed in Appendix A, for doing sequence classification with generative

models (generative classification), we simply train a model for each class in training

via solving the problem defined in Equation A.1. When it comes to testing, we assign

the data item xtest to the class ĉ that has the best fitting set of parameters θclass:

ĉ = arg max
k

p(xtest|θk) (2.1)

The “goodness” of a the model parameter θc is as high as this probability, so the

class that has the highest probability parameter θc is the assigned class. In this thesis,

we use two generative models for sequence classification: Markov model (in Section

2.1.1) and Hidden Markov model (in Section 2.1.2).

2.1.1. Markov Model

In a Markov model, a generated observation sequence is a first order Markov

chain. The likelihood of an observation sequence x = x1:T = {x1, x2, . . . , xT}, given

11

the model parameters θ = {A, π}, is defined as follows:

p(x1:T |θ) =
T∏
t=1

p(xt| xt−1)

=
L∏
l=1

π
[x1=l]
l

T∏
t=2

L∏
l1=1

L∏
l2=1

A
[xt=l1][xt−1=l2]
l1,l2

(2.2)

where, the observations are dependent on each other in a chain fashion: In order

to generate the observation at time instant t, xt, we need the previous observation

xt−1. Note that observation xt is a discrete variable, and xt ∈ {1, . . . , L}. The model

parameters are defined as follows:

• A(u, v) := p(xt = u| xt−1 = v), for t ≥ 2, time invariant observation transition

matrix

• π(u) := p(x1 = u|x0) = p(x1 = u), initial observation distribution

The directed graph model corresponding to a Markov model is given in Figure 1.3a.

Two example sequences generated from a Markov model are given in Figure 2.1.

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

Time

O
b
se

rv
at

io
n

 x
t−1

x
t

p(x
t
|x

t−1
)

2 4 6

2

4

6
0

0.2

0.4

0.6

0.8

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

Time

O
b

se
rv

at
io

n

 x
t−1

x
t

p(x
t
|x

t−1
)

2 4 6

2

4

6

0.2

0.4

0.6

Figure 2.1. Example sequences generated from Markov model. Corresponding

transition matrices p(xt| xt−1) are given next to the sequences. We see the effect of

the transition matrix on the generated sequence.

12

A maximum likelihood estimate for parameters of a Markov model can be made

in closed form. So, there is no need for an iterative algorithm such as EM. As the

intuition suggests, it can be shown that learning the transition matrix A given some

sequences x1:N simply amounts to counting the state transitions and then normalizing

the empirical counts so that we have a conditional distribution. Similarly, according

to the empirical counts for the first observation, we can estimate π. We omit the

derivation because of its similarity to derivation of the EM algorithm for learning

mixture of Markov models.

2.1.2. Hidden Markov Model

In Hidden Markov Models (HMMs), we do not observe a Markov chain directly,

but instead have a hidden Markov chain r1:T , with rt ∈ {1, . . .M}, and we observe a

sequence x = x1:T dependent on this latent state sequence. According to an HMM,

given the model parameters θ = (O,A, π), the likelihood p(x1:T |θ) of an observation

sequence is defined as follows:

p(x1:T |θ) =
∑
r1:T

p(x1:T , r1:T |θ)

=
∑
r1:T

T∏
t=1

p(xt|rt)p(rt|rt−1) (2.3)

The model parameters are defined as follows:

• π(u) = p(r1 = u|r0) = p(r1 = u), the initial latent state distribution

• A(u, v) = p(rt = u|rt−1 = v), for t ≥ 2, latent state transition matrix

• O(:, u) = E[xt|rt = u], observation matrix

where, π ∈ RM , A ∈ RM×M and O ∈ RL×M . A column O(:, u) of the observation matrix

O is defined as the expectation of the observation at time instant xt, conditioned on

the latent state. According to how one models p(xt| rt), the observation matrix O

corresponds to some model parameters. Some frequently used modeling choices are as

follows:

13

• Gaussian: p(xt|rt = u) = N (xt;µu, σ
2)

then, O(:, u) = E[xt|rt = u] = µu.

• Poisson: p(xt|rt = u) = PO(xt;λu)

then, O(:, u) = E[xt|rt = u] = λu.

• Discrete: p(xt|rt = u) = Discrete(pu)

then, O(:, u) = E[xt|rt = u] = pu.

where, the first choice is multivariate, isotropic Gaussian with mean µu ∈ RL. As one

might wonder, it is also possible to choose the observation density as a Gaussian with

an arbitrary covariance matrix. For the sake of simplicity, we only consider the mean

as a model parameter. Gaussian observation density is often used for applications with

continuous observations. The second distribution is Poisson with intensity parameter

λu ∈ RL. This choice is particularly useful for count data, as Poisson distribution is

used to model count data. The last density is a generic discrete distribution, with

parameter pu ∈ RL. It is suitable for every application with discrete observations.

However, since the model is quite flexible, one may suffer from overfitting, in a super-

vised classification scenario. The graphical model of a Hidden Markov model is given

in Figure 1.3b.

An example data generated from a Hidden Markov model with Gaussian observa-

tion model is given in Figure 2.2 and discrete observation model in Figure 2.3. Given

a sequence x1:T , to learn the parameters θ = (O,A, π), of an HMM, we can maximize

likelihood:

θ∗ = arg max
θ

p(x1:T |θ) = arg max
θ

∑
r1:T

p(x1:T , r1:T |θ) (2.4)

However, since the likelihood p(x1:T |θ) is defined via a summation over the latent state

sequences r1:T , we have to resort to some iterative optimization method. One of the

most common ways is to iteratively maximize an EM lower bound:

Q(θold, θnew) = Ep(r1:T | x1:T ,θold)[log(p(x1:T , r1:T |θnew))] (2.5)

14

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

Time

S
ta

te

 r
t−1

r
t

p(r
t
|r

t−1
)

1 2 3

1

2

3

0

0.2

0.4

0.6

0.8

0 10 20 30 40 50 60 70 80 90 100
−10

−5

0

5

10

Time

O
b
se

rv
at

io
n

1 2 3
−10

−5

0

5

10

 E(x
t
|r

t
)

 r
t

x
t

Figure 2.2. Example observation sequence generated from a hidden Markov model

with a Gaussian observation model, with L = 1, M = 3. Corresponding transition

matrix p(rt| rt−1) and observation matrix E[xt|rt] are given next to the sequences.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

Time

S
ta

te

 r
t−1

r
t

p(r
t
|r

t−1
)

1 2 3

1

2

3

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

Time

O
b
se

rv
at

io
n

 r
t

x
t

 E(x
t
|r

t
)

1 2 3

2

4

6

8

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

Figure 2.3. Example observation sequence generated from a hidden Markov model

with a discrete observation model, with L = 6, M = 3.

However, this approach requires clever initialization for θ as the optimization problem

does not have unique solution. In Section 4.2, we will discuss the local optima free

spectral learning algorithms in [4, 15].

2.2. Time series clustering models

For clustering time series data with unsupervised models, an unlabeled dataset

consisting of N data items x1:N is input to the clustering algorithm. The algorithm

returns the cluster labels h∗1:N as output. We use mixture Markov models (Section 2.2.1)

and mixture of HMMs (Section 2.2.2) as time series clustering models. These models

15

are by nature generative models, since we model the data distribution p(x1:N | θ1:K).

2.2.1. Mixture of Markov Models

In Mixture of Markov models each data item is generated from one of the K

clusters of Markov models. The likelihood of a sequence is modeled as a convex com-

bination of K Markov models with transition matrices A1:K . The likelihood of an

observation sequence xn = {x1,n, x2,n, . . . , xTn,n } of length Tn is defined as follows:

p(xn| A1:K) =
K∑
k=1

p(hn = k)p(xn|hn = k)

=
K∑
k=1

p(hn = k)
Tn∏
t=1

p(xt,n|xt−1,n, hn = k)

=
K∑
k=1

p(hn = k)
Tn∏
t=1

L∏
l1=1

L∏
l2=1

A
[xt,n=l1][xt−1,n=l2]
k,l1,l2

(2.6)

where, the variable hn ∈ {1, 2, . . . , K} is the latent cluster indicator of a sequence

xn. Note that xt,n, the observation at time t of sequence n is a discrete variable

which takes on values from {1, 2, . . . , L}, and p(xt|xt−1, hn = k) = Ak ∈ RL×L is the

transition matrix of the sequences in cluster k. For the sake of simplicity, we omit the

initial observation distribution p(x1, hn) = πhn . The corresponding graphical model is

given in Figure 1.4a.

In this model, each sequence is generated using a transition matrix dependent on

a cluster label. That is, we have a mixture of Markov chains where each mixture com-

ponent is specified by a distinct transition matrix Ak. Example observation sequences

are given in Figure 2.4 and corresponding transition matrices are given in Figure 2.5.

Given N observation sequences x1:N = {x1,x2, . . . ,xN}, to learn the transition

matrices of all clusters A1:K , we can maximize the likelihood:

A∗1:K = arg max
A1:K

p(x1:N |A1:K) = arg max
A1:K

∑
h1:N

N∏
n=1

p(xn, hn|A1:K) (2.7)

16

0 20 40 60 80 100

2

4

6

Time

O
b

s
e
rv

a
ti

o
n

0 20 40 60 80 100

2

4

6

Time

O
b

s
e
rv

a
ti

o
n

0 20 40 60 80 100

2

4

6

Time

O
b

s
e
rv

a
ti

o
n

0 20 40 60 80 100

2

4

6

Time

O
b

s
e
rv

a
ti

o
n

0 20 40 60 80 100

2

4

6

Time

O
b

s
e
rv

a
ti

o
n

0 20 40 60 80 100

2

4

6

Time

O
b

s
e
rv

a
ti

o
n

Figure 2.4. Example time series data generated from mixture of Markov models. The

sequences generated from the first and second cluster are respectively given in first

and second columns.
p(x

t
|x

t−1
)

 x
t−1

x
t

2 4 6

1

2

3

4

5

6
0

0.2

0.4

p(x
t
|x

t−1
)

 x
t−1

x
t

2 4 6

1

2

3

4

5

6

0.2

0.4

0.6

0.8

Figure 2.5. Transition matrices used to generate the data in Figure 2.4. The

transition matrices of the first and second clusters are respectively given in first and

second columns.

However, since the likelihood p(x1:N |A1:K) is defined via a summation over all possible

combinations of the cluster indicator variables h1:N , we have to resort to some iterative

optimization method. One of the most common ways is to iteratively maximize an EM

lower bound:

Q(Aold1:K , A
new
1:K) = Ep(h1:N | x1:N ,A

old
1:K)[log(p(x1:N , h1:N |Anew1:K))] (2.8)

However, this approach requires clever initialization for A1:K as the optimization prob-

lem does not have unique solution. In Section 4.3, we propose a local optima-free

17

alternative learning algorithm for learning mixture using the spectral learning algo-

rithms in [4].

2.2.2. Mixture of Hidden Markov Models

In Mixture of HMMs each data item is generated from one of the K clusters of

HMMs. The likelihood of an observation sequence xn = {x1,n, x2,n, . . . , xTn,n } of length

Tn is modeled as a convex combination of K hidden Markov models with parameters

θ1:K = (O1:K , A1:K , π1:K):

p(xn| θ) =
K∑
k=1

p(hn = k)p(xn|hn = k)

=
K∑
k=1

p(hn = k)
∑
rn

p(xn, rn|hn = k)

=
K∑
k=1

p(hn = k)
∑
r1:Tn,n

Tn∏
t=1

p(xt,n|rt,n)p(rt,n|rt−1,n) (2.9)

where, hn ∈ {1, 2, . . . , K} is the latent cluster indicator, and rn = {r1,n, r2,n, . . . , rTn,n }

is the latent state sequence of the observed sequence xn. As discussed in Section

2.2.1, the observation model p(xt,n|rt,n), can be chosen flexibly, in accordance with the

application’s demands.

The corresponding graphical model is given in Figure 1.4b. Note that for the sake

of simplicity, we omit the initial state distribution p(r1,n|hn) = πhn . In this model, each

sequence is generated using a state transition matrix Ak and an observation matrix Ok

dependent on the cluster indicator variable hn. That is, we have a mixture of Markov

chains where each mixture component is specified by the model parameters θk. Example

generated sequences from a mixture of HMMs with unit variance Gaussian observation

model are given in Figure 2.6 and corresponding model parameters are given in Figure

2.7.

Given N observation sequences x1:N = {x1,x2, . . . ,xN}, to learn the model pa-

18

0 20 40 60 80 100

−5

0

5

Time

O
b

s
e
rv

a
ti

o
n

0 20 40 60 80 100
−5

0

5

10

Time

O
b

s
e
rv

a
ti

o
n

0 20 40 60 80 100

−5

0

5

Time

O
b

s
e
rv

a
ti

o
n

0 20 40 60 80 100
−5

0

5

10

Time

O
b

s
e
rv

a
ti

o
n

0 20 40 60 80 100

−5

0

5

Time

O
b

s
e
rv

a
ti

o
n

0 20 40 60 80 100
−5

0

5

10

Time

O
b

s
e
rv

a
ti

o
n

Figure 2.6. Example time series data generated from mixture of HMMs. The

sequences generated from the first and second cluster are respectively given in first

and second columns.

p(x
t
|x

t−1
)

 x
t−1

x
t

1 2 3

0.5

1

1.5

2

2.5

3

3.5

0.2

0.4

0.6

0.8

p(x
t
|x

t−1
)

 x
t−1

x
t

1 2 3

0.5

1

1.5

2

2.5

3

3.5

0.2

0.4

0.6

0.8

1 1.5 2 2.5 3
−10

−5

0

5

10

 E(x
t
|r

t
)

 r
t

x
t

1 1.5 2 2.5 3
−5

0

5

10

15

 E(x
t
|r

t
)

 r
t

x
t

Figure 2.7. Transition matrices and observation matrices used to generate the data in

Figure 2.6. The parameters of the first and second clusters are respectively given in

first and second columns.

19

rameters of all clusters θ1:K , we can maximize the likelihood;

θ∗1:K = arg max
θ1:K

p(x1:N |θ1:K) = arg max
θ1:K

∑
h1:N

∑
rn

N∏
n=1

p(xn, rn, hn|θ1:K) (2.10)

However, since the likelihood p(x1:N |θ1:K) is defined via a summation over all possible

combinations of the cluster indicator variables h1:N , and for each sequence xn all pos-

sible combinations of the latent state sequence rn, we have to resort to some iterative

optimization method. One of the most common ways is to iteratively maximize an EM

lower bound:

Q(θold1:K , θ
new
1:K) = Ep(h1:N ,r1:N | x1:N ,θ

old
1:K)[log(p(x1:N , h1:N |θnew1:K))] (2.11)

However, this approach requires clever initialization for θ1:K as the optimization prob-

lem does not have a unique solution. A spectral learning algorithm that learns the

model parameters θ1:K is hard to derive because of the permutation ambiguity caused

by the presence of two layers of hidden variables hn and rn. Instead, we propose using

spectral learning algorithm as a subroutine in a k-means type algorithm in Section 4.4.

2.3. Discriminative Time Series Models

As discussed extensively in Appendix A, the reason for using discriminative mod-

els is to achieve the maximum class separability in training. That is, we optimize the

model parameters so that the classes are separated maximally. This is equivalent to

maximizing the product of the posterior of the class labels. In this section we derive

the discriminative counterparts of Markov model and HMM. The general methodology

to derive the discriminative equivalent of a generative model amounts to converting

the model to an undirected graphical model by defining an appropriate energy func-

tion [20]. This way, the data x1:N is only considered as an input to the model. The

output of a discriminative model are the class labels h1:N .

20

2.3.1. Discriminative Markov Model

To derive a learning algorithm for the discriminative Markov model, we first write

the log-posterior of the class label hn;

logp(hn|xn, A1:K)

= log
p(xn, hn|A1:K)∑
hn
p(xn, hn|A1:K)

= log p(xn, hn|A1:K)− log
∑
hn

p(xn, hn|A1:K)

= log{p(hn)p(xn| hn, A1:K)} − log{
K∑

hn=1

p(hn)p(xn| hn, A1:K)}

= log{p(hn)
Tn∏
t=1

K∏
k=1

L∏
l1=1

L∏
l2=1

A
[hn=k][l1=xt][l2=xt−1]
k,l1,l2

}

− log{
K∑
k=1

p(hn)
Tn∏
t=1

K∏
k=1

L∏
l1=1

L∏
l2=1

A
[hn=k][l1=xt][l2=xt−1]
k,l1,l2

}

= log p(hn) +
Tn∑
t=1

L∑
l1=1

K∑
k=1

L∑
l2=1

[hn = k][l1 = xt][l2 = xt−1] logAk,l1,l2

− log

{
K∑
k=1

exp

(
log p(hn) +

Tn∑
t=1

K∑
k=1

L∑
l1=1

L∑
l2=1

[hn = k][l1 = xt][l2 = xt−1] logAk,l1,l2

)}
(2.12)

Assuming uniform prior p(hn) for the sake of simplicity, and defining the model pa-

rameters as θk,l1,l2 := logAk,l1,l2 , the log-posterior becomes;

log p(hn = k|xn, A1:K)

= log p(hn = k|xn, θ1:K)

=
Tn∑
t=1

L∑
l1=1

L∑
l2=1

[hn = k][l1 = xt][l2 = xt−1]θk,l1,l2

− log

{
K∑

hn=1

exp

(
Tn∑
t=1

L∑
l1=1

L∑
l2=1

[hn = k][l1 = xt][l2 = xt−1]θk,l1,l2

)}
(2.13)

21

The expression inside the exponential in Equation 2.13 is defined as the energy func-

tion ψ(xn, hn; θk), and for discriminative Markov model, it is defined as follows;

ψ(xn, hn; θk) =
Tn∑
t=1

K∑
k=1

L∑
l1=1

L∑
l2=1

[hn = k][l1 = xt][l2 = xt−1]θk,l1,l2 (2.14)

The likelihood p(xn|hn = k, θ1:K) is in fact expressed as exp(ψ(xn, hn = k; θk)). So, the

overall procedure to derive the discriminative counterpart of a generative model mostly

amounts to determining the corresponding energy function ψ(xn, hn; θk). Notice that,

deriving an energy function for a discriminative model is also equivalent to converting

a directed graphical model of a generative model to an undirected one. The undirected

graph corresponding to discriminative model is given in Figure 1.5a. Given the data

x1:N and class labels h1:N , we simply solve the optimization problem in Equation 2.15

to learn the model parameters θ1:K :

θ∗1:K = arg max
θ1:K

N∏
n=1

p(hn|xn, θ1:K)

= arg max
θ1:K

N∑
n=1

log p(hn|xn, θ1:K)

= arg max
θ1:K

N∑
n=1

log
exp(ψ(xn, hn; θk))∑K
hn=1 exp(ψ(xn, hn; θk))

= arg max
θ1:K

N∑
n=1

ψ(xn, hn; θk)−
N∑
n=1

log
K∑

hn=1

exp(ψ(xn, hn; θk)) (2.15)

We took the logarithm of
∏N

n=1 p(hn|xn, θ1:K), since taking the logarithm makes it eas-

ier to differentiate with respect to the unknowns. Since the logarithm is a monotonic

function, and does not change the maximizer, we were able to do this. Given N se-

quences x1:N and N class labels h1:N , we maximize this expression by gradient descent.

We give the detailed derivation of the gradient descent updates in Section 3.5. One

final note is that, we do not constrain the model parameter θk to be the logarithm of a

probability table (a transition matrix in this case), as we do in Markov model. This is

because of the reasons we discussed extensively in Appendix A: We do not care about

the distribution (how we generate) the data, but our only concern is to obtain a good

22

decision boundary to separate the two classes.

2.3.2. Discriminative Hidden Markov Model

As we have discussed in the previous section, deriving the discriminative coun-

terpart of a generative model amounts to deriving the corresponding energy function.

The energy function of the discriminative counterpart of a hidden Markov model is

specified as follows:

ψ(xn, rn, hn; θ) =
K∑
k=1

T∑
t=1

M∑
m1=1

M∑
m2=1

[rt,n = m1][rt−1,n = m2][hn = k]θ1k,m1,m2

+
K∑
k=1

T∑
t=1

L∑
l=1

M∑
m=1

[xt,n = l][rt,n = m][hn = k]θ2k,l,m (2.16)

Note that in this model θ1:K = (θ11:K = logA1:K , θ
2
1:K = logO1:K). So, the first term

basically stands for the state transitions and the second term is the discrete observation

matrix. We have considered a discrete observation model, but it is possible to derive an

energy function for arbitrary observation model. Given the data x1:N and class labels

h1:N , we simply solve the optimization problem in Equation 2.17 to learn the model

parameters θ1:K :

θ∗1:K = arg max
θ1:K

N∏
n=1

p(hn|xn, θ1:K)

= arg max
θ1:K

N∑
n=1

log p(hn|xn, θ1:K)

= arg max
θ1:K

N∑
n=1

log

∑
rn

exp(ψ(xn, rn, hn; θk))∑K
h′n=1

∑
rn

exp(ψ(xn, rn, h′n; θk))

= arg max
θ1:K

N∑
n=1

log
∑
rn

exp(ψ(xn, rn, hn; θk))

−
N∑
n=1

log
K∑

h′n=1

∑
rn

exp(ψ(xn, rn, h
′
n; θk)) (2.17)

23

This expression can be minimized using an iterative algorithm such as gradient

descent where the necessary probability distributions are computed using forward-

backward message passing. The details can be found in Section 3.6. The corresponding

undirected graphical model of discriminative HMM is given in Figure 1.5b. Note that

the class of discriminative models with a latent state sequence layer rn, and a class

indicator hn is also called hidden conditional random field (HCRF) [21].

24

3. MAXIMUM LIKELIHOOD BASED LEARNING

ALGORITHMS

In this chapter, we describe the maximum likelihood parameter learning algo-

rithms for the models we introduced in Chapter 2. We also describe the theoretical

and practical details of the expectation-maximization (EM) algorithm.

3.1. Expectation Maximization Algorithm

Expectation maximization algorithm [22] is a very popular algorithm for param-

eter learning in latent variable models. The problem setting in a typical Expectation-

Maximization scenario is as follows:

θ∗ = arg max
θ

log p(x|θ)

= arg max
θ

log
∑
h

p(x, h|θ) (3.1)

where, h is the latent variable over which we take a summation, x is the observation,

and θ is the parameter to be optimized. Since the likelihood p(x|θ) is defined with a

summation over a latent variable h, which prevents the logarithm to act directly on the

distribution, we have a complicated function to optimize. EM algorithm provides an

alternative way for solving the maximum likelihood problem in latent variable models,

by optimizing functions which are easier to optimize. Let us consider the log-likelihood

log p(x|θ): (Usage of log may seem arbitrary, but will become obvious shortly.)

log p(x|θ) = log
∑
h

p(x, h|θ)

= log
∑
h

q(h)
p(x, h|θ)
q(h)

(3.2)

where q(h) is an arbitrary distribution on the latent variable h. Now, notice that we

have a convex combination of the functions p(x,h|θ)
q(h)

inside the logarithm. Since logarithm

25

is a concave function, we can apply the Jensen’s inequality to obtain:

log
∑
h

q(h)
p(x, h|θ)
q(h)

≥
∑
h

q(h) log
p(x, h|θ)
q(h)

=Eq(h)[log p(x, h|θ)]− Eq(h)[log q(h)]︸ ︷︷ ︸
Q(θ):=

(3.3)

So, we have found a lower bound Q(θ) on the log-likelihood, where the first term is the

expectation of logarithm of the joint distribution, which is generally easy to compute,

and second term is the entropy of the q(h) distribution, which is a constant with respect

to model parameter θ. The next thing is to maximize this bound with respect to the

arbitrary distribution q(h) for a fixed θ.

Claim: The bound Q(θ) is maximized for a fixed θ when q(h) = p(h|x, θ).

Proof.

Q(θ) =Eq(h)[log p(x, h|θ)]− Eq(h)[log q(h)]

=Eq(h)[log p(h|x, θ)] + Eq(h)[log p(x|θ)]− Eq(h)[log q(h)]

=Eq(h)[log p(x|θ)]−KL(q(h)‖p(h|x, θ))

= log p(x|θ)−KL(q(h)‖p(h|x, θ)) (3.4)

where, KL(.) is the KL divergence. Since KL divergence is always positive, the bound

Q(θ) attains log p(x|θ) iff q(h) = p(h|x, θ), which is the posterior of the hidden variable.

Moreover, from Equation 3.4 we see that if q(h) = p(h|x, θ), we have a tight

bound, i.e. at the θ value where the bound is computed, Q(θ) = log p(x|θ). In order

to sketch the overall algorithm let us denote the parameter θ with which we compute

the bound θold. That is, we define Q(θ, θold) := Q(θold). (The bound is computed using

26

θold, and it is a function of θ.) We maximize this bound with respect to θ, to find θnew:

θnew = arg max
θ

Q(θ, θold) (3.5)

Then, we compute a new bound Q(θ, θnew), using p(h|x, θnew). The step where we

compute a novel bound is called the E step. The step we maximize this bound is

called the M step, and hence the name EM algorithm. We repeat these steps until

convergence. The overall algorithm is given in Figure 3.1.

Input: Sequences Data x

Output: Estimated model parameter(s) θ∗

Randomly initialize model parameters θ0.

for τ = 1 to maxiter do

E-Step: Compute the bound Q(θ, θτ−1) using the posterior p(h|x, θτ−1)

M-Step: Update the model parameters θτ by maximizing the bound Q(θ, θτ−1)

end for

Figure 3.1. Expectation Maximization Algorithm.

Claim: EM iterations increase (at worst do not decrease) the log-likelihood log p(x|θτ).

Proof. Let Q(θτ , θτ−1) := arg maxθQ(θ, θτ−1), then

log p(x| θτ−1) = Q(θτ−1, θτ−1) ≤ Q(θτ , θτ−1). (3.6)

since we have foundQ(θτ , θτ−1) by maximizingQ(θ, θτ−1). We also know from Equation

3.4 for a fixed parameter θτ , the bound is maximized when the bound is computed

using the posterior p(h|x, θτ). That is, updating the bound can only increase the

bound value at θτ . So Q(θτ , θτ−1) ≤ Q(θτ , θτ). Thus, we conclude that log p(x|θτ−1) =

Q(θτ−1, θτ−1) ≤ log p(x|θτ) = Q(θτ , θτ).

Although, this gives us a local convergence guarantee, we do not have a global

27

convergence guarantee. For global convergence, we do need to have proper initializa-

tions to obtain good solutions. Let us demonstrate this on a toy problem. The problem

is to find the maximizing x1 for the marginal distribution p(x1):

x∗1 = arg max
x1

∑
x2

p(x1, x2) (3.7)

In the typical EM setting in Equation 3.1, x2 is the latent variable (h), and x1 is the

parameter (θ) to be optimized (For the sake of simplicity we do not have observation

x). In Figure 3.2, we see the joint distribution p(x1, x2). In the Figure 3.3, we see

the EM iterations with bounds in each iteration. The log likelihood log p(x1) is shown

with a blue curve. As shown mathematically, the EM iterations do not decrease the

log-likelihood log p(x1), and EM bounds are tight to the log-likelihood, on the x1 value

with which it is computed. Furthermore, we see that we only have local convergence

guarantee as we see that initializations from different x1 values result in convergence

to different locally optimal x∗1.

x
2

x
1

p(x
1
,x

2
)

50 100 150 200

20

40

60

80

100

120

140

160

180

200

1

2

3

4

5

6

7

8

9

10

11

x 10
−5

Figure 3.2. Joint distribution p(x1, x2) used in the toy problem for demonstration of

the EM algorithm.

28

0 50 100 150 200
−12

−11

−10

−9

−8

−7

−6

−5

−4

x
1

Initialization from 95

1

23456
log p(x

1
)

a. EM iterations, initialization from x1 = 95

0 50 100 150 200
−8

−7.5

−7

−6.5

−6

−5.5

−5

−4.5

x
1

Initialization from 111

1

2
3

log p(x
1
)

b. EM iterations, initialization from x1 = 111

Figure 3.3. EM runs with two different initializations. The log-likelihood log p(x1, x2)

is shown with a blue curve. Bound computed at each iteration is enumerated with

the current iteration count, with a corresponding color. We see that bounds are tight

on the parameter value, with which they are computed.

3.2. Learning HMM with EM

In order to derive an EM algorithm for a latent variable model, mainly we have

to do two things. First, we have to derive an EM lower bound Q(θ, θold), which cor-

responds to the E-step. Then, we have to maximize this bound with respect to model

parameters θ, which corresponds to the M-step. Let us first write the EM lower bound

for a Hidden Markov model:

Q(θ, θ∗) =+Ep(r1:T |x1:T ,θ∗)[log p(x1:T , r1:T |θ)]

=Ep(r1:T |x1:T ,θ∗)[log
T∏
t=1

p(xt|rt, O)p(rt|rt−1, A)]

=
T∑
t=1

Ep(rt| x1:T ,θ∗)[log p(xt|rt, O)] +
T∑
t=1

Ep(rt,rt−1| x1:T ,θ∗)[log p(rt|rt−1, A)]

=
T∑
t=2

M∑
m=1

E([rt = m]) log p(xt| rt, O(:, k))

+
T∑
t=2

M∑
j=1

M∑
k=1

E([rt−1 = m1][rt = m2]) logAm1,m2 (3.8)

Note that for the sake of simplicity we do not consider the initial state distribution

π. Taking it uniform, generally works well in practice. In order to keep the notation

29

uncluttered, we do not show the distribution with respect to which we are taking

expectations. The next thing is to maximize this lower bound with respect to, A,

and O. Since this is an unconstrained optimization problem, we take derivatives with

respect to O and A and equate the expressions to zero. (We use Lagrange multipliers

to ensure that A is a probability table.) The update equation for the transition matrix

A turn out to be as follows;

Anewm1,m2
=

∑T
t=2 E([rt−1 = m1][rt = m2])∑T

t=2

∑M
m2=1 E([rt−1 = m1][rt = m2])

(3.9)

intuitively, this update equation counts the expected state transitions: Since we do not

observe r1:T directly, we compute an expectation, and count the expected transitions

to update the state transition matrix A. Update equations for the observation matrix

O. The update equations for the frequently used models used in Section 2.1.2 are as

follows:

• Poisson; O = λ, the intensity parameter:

λnewm =

∑T
t=1 E[rt = m]xt∑T
t=1 E[rt = m]

(3.10)

• Gaussian; O = µ, the mean parameter:

µnewm =

∑T
t=1 E[rt = m]xt∑T
t=1 E[rt = m]

(3.11)

• Discrete; O = p, the discrete distribution:

pnewl,m =

∑T
t=1 E([rt = m])[xt = l]∑T

t=1

∑L
l′=1 E([rt = m])[xt = l′]

(3.12)

30

3.2.1. Inference in HMMs

To implement these update equations, we of course need to compute the expec-

tations E([rt = m]) and E([rt−1 = m1][rt = m2]). Note that, as mentioned before, to

keep the notation uncluttered, we do not indicate the density with respect to which

we take these expectations. In an EM algorithm, the expectations are always with

respect to the posterior of the latent variable(s). In HMM, the posterior distribu-

tion is p(r1:T | x1:T , θ), the posterior of the latent state trajectory. Let us consider the

expectation E([rt = m]).

E([rt = m]) =
∑
r1:T

p(r1:T | x1:T , θ)[rt = m]

=
∑
rt

p(rt| x1:T , θ)[rt = m]

=p(rt = m| x1:T , θ) (3.13)

So, we need the posterior of a single latent state variable rt. The computation of this

posterior can be seen to be daunting at first sight, since we have take a some over

all possible trajectories (except rt), which is a huge sum, consisting of MT−1 possible

states. However, due to the conditional independence properties of the HMM graph

structure, we can in fact compute this posterior very efficiently using forward-backward

algorithm. Let us elaborate more: (We drop θ in probabilities for uncluttered notation)

p(rt| x1:T) ∝ p(x1:T , rt)

= p(x1:t, rt)︸ ︷︷ ︸
:=α(rt)

p(xt+1:T |rt)︸ ︷︷ ︸
:=β(rt)

(3.14)

where,

α(rt) =p(xt|rt)
∑
rt−1

p(rt|rt−1) p(xt−1|rt−1) . . . p(x2| r2)
∑
r1

p(r2|r1)p(x1|r1) p(r1)︸ ︷︷ ︸
α(r1)︸ ︷︷ ︸

α(r2)︸ ︷︷ ︸
α(rt−1)

(3.15)

31

So, we see that we can recursively compute the α(rt) (forward) message. Notice that,

due to the Markovian property of the model, we are able to distribute the sums over

the factor. This reduces the computational complexity to order O(M2T) to compute

all α messages. Similarly, the backward β messages are;

β(rt) =
∑
rt+1:T

∏
t=t+1:T

p(xt|rt)p(rt|rt−1)

=
∑
rt+1

p(rt|rt+1)p(xt+1|rt+1) . . .
∑
rT

p(rT |rT−1)p(xT |rT) 1︸︷︷︸
β(rT)︸ ︷︷ ︸

β(rT−1)︸ ︷︷ ︸
β(rt+1)

(3.16)

In the HMM literature product α(rt)β(rt) ∝ p(rt|x1:T) is called the γ(rt) message.

Similarly, the expectation E([rt−1 = m1][rt = m2]) can be computed via α and β

messages. Details can be found in standard machine learning textbooks such as [14],

so we do not reproduce the derivation here.

3.3. Learning mixture of Markov models with EM

According to the typical EM scenario as defined in Section 3.1, the latent variable

is h1:N , parameters to be optimized are the transition matrices A1:K , observations are

the sequences x1:N . Let us first derive the EM lower bound for the Markov model

mixture:

Q(A1:K , A
∗
1:K) =+Ep(h1:N |x1:N ,A

∗
1:K)[log p(x1:N , h1:N |A1:K)]

=Ep(h1:N |x1:N ,A
∗
1:K)[

N∑
n=1

log p(xn, hn|A1:K)]

=
N∑
n=1

K∑
k=1

Tn∑
t=1

L∑
l1=1

L∑
l2=1

[xt,n = l1][xt−1,n = l2]E([hn = k]) logAk,l1,l2

=
N∑
n=1

K∑
k=1

L∑
l1=1

L∑
l2=1

cnl1,l2E([hn = k]) logAk,l1,l2 (3.17)

32

where, cnl1,l2 =
∑Tn

t=1[xt,n = l1][xt−1,n = l2], the transition counts matrix for sequence

xn. Note that again for the sake of simplicity, we do not include the initial observation

distribution. In practice, taking it as uniform generally works well except for very short

sequences. We maximize this bound using a Lagrange multiplier for the constraint∑
l1
Ak,l1,l2 = 1 to obtain the update equation for A1:K :

Anew1:K =

∑N
n=1 c

n
l1,l2

E([hn = k])∑N
l1=1

∑N
n=1 c

n
l1,l2

E([hn = k])
(3.18)

The expectation needed for the parameter update equation is:

E([hn = k]) =
K∑

hn=1

p(hn|x1:N , A
∗
1:K)[hn = k]

=p(hn = k|x1:N , A
∗
1:K) =

p(xn |hn = k,A∗k)p(hn = k)∑K
k=1 p(xn|hn = k,A∗k)p(hn = k)

(3.19)

which tells us to compute the likelihood p(xn|hn = k,A∗k) for each cluster k, and then

by weighting the likelihoods by prior p(hn = k), we compute a cluster assignment

probability vector for each data item xn. When the data cluster assignments are made

with high confidence, that is generally when the EM iterations are close to convergence,

probability vector becomes a vector with only one entry one and others zero.

3.4. Learning mixture of HMMs with EM

According to the typical EM scenario as defined in Section 3.1, the latent variables

are; latent cluster indicators h1:N and latent state sequences r1:N , parameters θ1:K to

be optimized are the transition matrix of each cluster A1:K , and observation matrix of

each cluster O1:K , observations are the sequences x1:N . Let us first derive the EM lower

bound for the mixture of HMMs: Let us use q(r1:N , h1:N) = p(r1:N , h1:N |x1:N , θ
∗
1:K) to

33

keep the notation clutter minimal.

Q(θ1:K , θ
∗
1:K) =+ Eq(r1:N ,h1:N)[log p(x1:N , r1:N , h1:N |θ1:K)]

=Eq(r1:N ,h1:N)[
N∑
n=1

log p(xn, rn, hn|θ1:K)]

=
N∑
n=1

Eq(hn)[Eq(rn|hn)[log p(xn, rn, hn|θ1:K)]]

=
N∑
n=1

K∑
k=1

Eq(hn)([hn = k])Eq(rn|hn=k)

[
Tn∑
t=1

M∑
m1=1

M∑
m2=1

[rt,n = m1][rt−1,n = m2] logAk,m1,m2

]

+
N∑
n=1

K∑
k=1

Eq(hn)([hn = k])Eq(rn|hn=k)

[
Tn∑
t=1

M∑
m=1

[rt,n = m] log p(xt,n| rt,n, O(:, k))

]

=
N∑
n=1

K∑
k=1

E([hn = k])
Tn∑
t=1

M∑
m1=1

M∑
m2=1

Eq(rt−1:t,n|hn=k) ([rt,n = m1][rt−1,n = m2]) logAk,m1,m2

+
N∑
n=1

K∑
k=1

E([hn = k])
Tn∑
t=1

M∑
m=1

Eq(rt,n|hn=k)([rt,n = m]) log p(xt,n| rt,n, O(:, k)) (3.20)

So, we have derived the EM lower bound for mixture of HMMs. The next thing

is to maximize this bound with respect to the parameters θ1:K . Update equations turn

out to be as follows:

• Transition matrices A1:K :

Ak,m1,m2 =

∑N
n=1 E([hn = k])

∑Tn
t=1 Eq(rt−1:t,n|hn=k)([rt,n = m1][rt−1,n = m2])∑N

n=1 E([hn = k])
∑Tn

t=1

∑M
m′1=1 Eq(rt−1:t,n|hn=k)([rt,n = m′1][rt−1,n = m2])

(3.21)

• Observation matrices O1:K :

(i) Poisson observation model:

λk,l,m =

∑N
n=1 E([hn = k])

∑Tn
t=1 Eq(rt,n|hn=k)([rt,n = m])xt,n∑N

n=1 E([hn = k])
∑Tn

t=1 Eq(rt,n|hn=k)([rt,n = m])
(3.22)

34

(ii) Discrete observation model:

pk,l,m =

∑N
n=1 E([hn = k])

∑Tn
t=1 Eq(rt,n|hn=k)([rt,n = m])[xt,n = l]∑N

n=1 E([hn = k])
∑Tn

t=1

∑L
l′=1 Eq(rt,n|hn=k)([rt,n = m])[xt,n = l′]

(3.23)

(iii) Gaussian observation model:

µk,l,m =

∑N
n=1 E([hn = k])

∑Tn
t=1 Eq(rt,n|hn=k)([rt,n = m])xt,n∑N

n=1 E([hn = k])
∑Tn

t=1 Eq(rt,n|hn=k)([rt,n = m])
(3.24)

The necessary expectations to compute in the E-step are Eq(rt,n|hn=k)([rt,n = m]),

Eq(rt,n,rt−1,n|hn=k)([rt,n = m1][rt−1,n = m2]) and Eq(hn)([hn = k]). The first two can be

computed via forward-backward algorithm described in Section 3.2.1. The last one is

computed as follows:

Eq(hn)([hn = k]) =
p(hn = k)p(xn|θk)∑K
k=1 p(hn = k)p(xn|θk)

(3.25)

where, p(xn|θk) is the likelihood of xn given the parameters of cluster k. So,

we compute the likelihood for all clusters, and then by weighting with p(hn = k),

we compute the necessary expectation. Note that, in the M-step the parameters of

k’th cluster θk = (Ok, Ak), are updated using the expectations Eq(rt,n,rt−1,n|hn=k)([rt,n =

m1][rt−1,n = m2]) and Eq(rt,n|hn=k)([rt,n = m]). Therefore, in each EM iteration we

need to compute these expectations for N sequences and K clusters. Consequently,

for sequences of average length T and M latent states, since each EM iteration is

computationally dominated by the E-step, we have a computational complexity on

the order of O(M2TNK) in every iteration (These expectations can be computed

using forward-backward algorithm on the order of O(M2T).). Finally, note that we

can have a hard clustering algorithm just by changing the update of the expectations

E([hn = k]) = 1 for k = arg maxk p(yi|θk), and E([hn = k′]) = 0 for k′ 6= k. In this

case the necessary expectations for k’th HMM can be computed just by considering

the sequences in k’th cluster. This way, the complexity can be reduced to O(M2TN).

In Section 4.4, we propose a novel mixture of HMMs learning algorithm which further

35

reduces the computational complexity by using a spectral learning algorithm in the

parameter estimation step.

3.5. Training Discriminative Markov Model

The likelihood function to be maximized for training a discriminative Markov

model is as follows:

L(θ) =
N∑
n=1

ψ(xn, hn; θk)−
N∑
n=1

log
K∑
k=1

exp(ψ(xn, hn; θk))

=
N∑
n=1

K∑
k=1

Tn∑
t=1

L∑
l1=1

L∑
l2=1

[hn = k][l1 = xt][l2 = xt−1]θk,l1,l2

−
N∑
n=1

log
K∑

hn=1

exp(
K∑
k=1

Tn∑
t=1

L∑
l1=1

L∑
l2=1

[hn = k][l1 = xt][l2 = xt−1]θk,l1,l2) (3.26)

then, we compute the gradient of this expression with respect to θ to derive the gradient

descent update equations:

∂L(θ)

∂θk,l1,l2
=

N∑
n=1

Tn∑
t=1

[hn = k][l1 = xt][l2 = xt−1]

−
N∑
n=1

K∑
hn=1

exp(ψ(xn, hn; θk))∑K
hn=1 exp(ψ(xn, hn; θk))︸ ︷︷ ︸

p(hn|xn,θ∗)

Tn∑
t=1

[hn = k][l1 = xt][l2 = xt−1]

=
N∑
n=1

Tn∑
t=1

[hn = k][l1 = xt][l2 = xt−1]−
N∑
n=1

Tn∑
t=1

E([hn = k])[l1 = xt][l2 = xt−1]

=
N∑
n=1

(
[hn = k]− E([hn = k])

)
cnl1,l2 (3.27)

where, cnl1,l2 =
∑Tn

t=1[xt,n = l1][xt−1,n = l2], the transition counts matrix for sequence

xn. In practice, in order to avoid overfitting, it is customary to use a regularizer by

placing a prior θ ∼ N (θ; 0, σ2I) (which corresponds to a vector l2 norm) [21]. In this

36

case, the gradient descent updates become:

θnewk,l1,l2
←θoldk,l1,l2 + ζ

(
∂L(θ)

∂θk,l1,l2
− 1

2σ2
θk,l1,l2

)
(3.28)

where, ζ is the learning rate. In practice, it is generally necessary to make a line

search for an appropriate step size ζ, so that we do not decrease the likelihood L(θ)

with gradient descent steps. Note that, the gradient in Equation 3.27 makes sense

since, when we have the parameter θ so that all the classes are well-seperated, the

gradient vanishes. In such a case, the expectation of the class indicator E[hn] become

equal to the to the actual class indicator hn, and thus the gradient vanishes and we do

not update the parameter.

3.6. Training Discriminative HMM

The likelihood function to be maximized in the training of a discriminative HMM

is as follows:

L(θ1:K) =
N∑
n=1

log
∑
rn

exp

(
K∑
k=1

T∑
t=1

M∑
m1=1

M∑
m2=1

[rt,n = m1][rt−1,n = m2][hn = k]θ1k,m1,m2

+
K∑
k=1

T∑
t=1

L∑
l=1

M∑
m=1

[xt,n = l][rt,n = m][hn = k]θ2k,l,m

)

−
N∑
n=1

log
K∑

h′n=1

∑
rn

exp

(
K∑
k=1

T∑
t=1

M∑
m1=1

M∑
m2=1

[rt,n = m1][rt−1,n = m2][hn = k]θ1k,m1,m2

+
K∑
k=1

T∑
t=1

L∑
l=1

M∑
m=1

[xt,n = l][rt,n = m][hn = k]θ2k,l,m

)
(3.29)

Then, we compute the partial derivatives ∂L(θ1:K)/∂θ1k,m1,m2
and ∂L(θ1:K)/∂θ2k,l,m to

37

derive the gradient descent update equations.

∂L(θ1:K)

∂θ1k,m1,m2

=
N∑
n=1

∑
rn

exp(ψ(xn, rn, hn; θ1:K))∑
r′n

exp(ψ(xn, r′n, hn; θ1:K))

T∑
t=1

[rt,n = m1][rt−1,n = m2][hn = k]

−
N∑
n=1

∑
rn,hn

exp(ψ(xn, rn, hn; θ1:K))∑
r′n,h

′
n

exp(ψ(xn, r′n, h
′
n; θ1:K))

T∑
t=1

[rt,n = m1][rt−1,n = m2][hn = k]

=
N∑
n=1

∑
rn

p(rn|hn,xn, θ1:K)
T∑
t=1

[rt,n = m1][rt−1,n = m2][hn = k]

−
N∑
n=1

∑
hn,rn

p(rn, hn|xn, θ1:K)
T∑
t=1

[rt,n = m1][rt−1,n = m2][hn = k]

=
N∑
n=1

T∑
t=1

[hn = k]Ep(rt,n,rt−1,n|hn,xn,θ1:K)([rt,n = m1][rt−1,n = m2])

−
N∑
n=1

T∑
t=1

Ep(rt,n,rt−1,n,hn|xn,θ1:K)([rt,n = m1][rt−1,n = m2][hn = k]) (3.30)

Similarly for θ2k,l,m;

∂L(θ1:K)

∂θ2k,l,m
=

N∑
n=1

∑
rn

exp(ψ(xn, rn, hn; θ1:K))∑
r′n

exp(ψ(xn, r′n, hn; θ1:K))

T∑
t=1

[xt,n = l][rt,n = m][hn = k]

−
N∑
n=1

∑
rn,hn

exp(ψ(xn, rn, hn; θ1:K))∑
r′n,h

′
n

exp(ψ(xn, r′n, h
′
n; θ1:K))

T∑
t=1

[xt,n = l][rt,n = m][hn = k]

=
N∑
n=1

∑
rn

p(rn|hn,xn, θ1:K)
T∑
t=1

[xt,n = l][rt,n = m][hn = k]

−
N∑
n=1

∑
hn,rn

p(rn, hn|xn, θ1:K)
T∑
t=1

[xt,n = l][rt,n = m][hn = k]

=
N∑
n=1

T∑
t=1

[hn = k][xt,n = l]Ep(rt,n|hn,xn,θ1:K)([rt,n = m])

−
N∑
n=1

T∑
t=1

[xt,n = l]Ep(rt,n,hn|xn,θ1:K)([rt,n = m][hn = k]) (3.31)

Then, using gradient descent, we update the parameters.

38

θ1,newk,m1,m2
←θ1,oldk,m1,m2

+ ζ

(
∂L(θ1:K)

∂θ1k,m1,m2

− 1

2σ2
θ1k,m1,m2

)
(3.32)

θ2,newk,l,m ←θ
2,old
k,l,m + ζ

(
∂L(θ1:K)

∂θ2k,l,m
− 1

2σ2
θ2k,l,m

)
(3.33)

The last terms in these update equations are due to regularizer.

3.6.1. Inference in discriminative HMM

The necessary expectations we have to compute are,

Ep(rt,n|hn,xn,θ1:K)[rt,n = m] =
K∑

rt,n=1

p(rt,n|hn,xn, θ1:K)[rt,n = k]

=p(rt,n = k|hn,xn, θ1:K) (3.34)

p(rt,n|hn,xn, θ1:K), can be estimated using forward-backward algorithm described in

Section 3.2.1.

Ep(rt,n,hn|xn,θ1:K)([rt,n = m][hn = k])

=
∑
rt,n,hn

p(rt,n, hn|xn, θ1:K)[rt,n = m][hn = k]

=
∑
rt,n,hn

p(rt,n|hn,xn, θ1:K)p(hn|xn, θ1:K)[rt,n = m][hn = k]

= p(rt,n = m|hn = k,xn, θ1:K)p(hn = k|xn, θ1:K)

= p(rt,n = m|hn = k,xn, θ1:K)
p(xn|hn = k, θ1:K)p(hn = k)

p(xn|θ1:K)
(3.35)

The other two necessary expectations are pairwise expectations of rt and rt−1.

39

Ep(rt,n,rt−1,n|hn,xn,θ1:K)([rt,n = m1][rt−1,n = m2])

=
∑
rt,n

∑
rt−1,n

[rt,n = m1][rt−1,n = m2]p(rt,n, rt−1,n|hn,xn, θ1:K)

= p(rt,n = m1, rt−1,n = m2|hn,xn, θ1:K) (3.36)

Ep(rt,n,rt−1,n,hn|xn,θ1:K)([rt,n = m1][rt−1,n = m2][hn = k])

=
∑

rt,n,rt−1,n,hn

p(rt,n, rt−1,n, hn|xn, θ1:K)[rt,n = m1][rt−1,n = m2][hn = k]

=
p(rt,n = m1, rt−1,n = m2, hn = k|xn, θ1:K)p(xn|hn = k, θ1:K)p(hn = k)

p(xn|θ1:K)
(3.37)

All of the necessary probabilities can be computed efficiently using forward-backward

algorithm in Section 3.2.1.

40

4. METHOD OF MOMENTS BASED LEARNING

ALGORITHMS

In this chapter, we describe the method of moments based learning algorithms

for latent variable models. The main idea in these algorithms is to do (or bypass) the

parameter estimation step by using the fact that model parameters can be expressed

as a function of some observable moments. This approach is rooted in Pearson’s early

work in 1936 [23], for learning mixtures of Gaussians. Now, let us consider the following

example problem: Suppose we want to learn the parameters of a Gamma distribution

G(x; a, b), from its first and second order moments:

M1 := E[x] =ab (4.1)

M2 := E[x2] =ab2 + a2b2 (4.2)

We can solve this system of equations for a and b:

a =
M2

1

M2 −M2
1

(4.3)

b =
M2 −M2

1

M1

(4.4)

So, we conclude that we can relate the moments of the Gamma distribution to its

parameters a and b. The main advantage of method of moments compared to the

classical maximum likelihood (ML) estimation is that, we can estimate the model

parameters in closed form. In some cases, as in this one, a closed form solution may

not be possible in ML approach. For a ML estimation, we first need to solve the

following equation via a numerical method:

log(a)− ψ(a) = log

(
1

N

N∑
n=1

xn

)
− 1

N

N∑
n=1

log(xn) (4.5)

41

then, b is estimated from,

b =
1

aN

N∑
n=1

xn (4.6)

where, N is the number of data points and ψ(.) is the digamma function. So, we see

that a ML solution for parameters a, b is more complicated than a method of moments

approach. Note that, for a method moments approach, in practice we replace M1 and

M2 with empirical moment estimates;

M̂1 =
1

N

N∑
n=1

xn (4.7)

M̂2 =
1

N

N∑
n=1

x2n (4.8)

Therefore, the accuracy of the empirical moment estimates are of crucial impor-

tance for the overall accuracy of the method. Naturally, to have accurate moment

estimates, we have to have large number of samples N . Otherwise, inaccurate moment

estimates lead to inaccurate parameter estimates. In Figure 4.1, we show the param-

eter estimations from data where xn ∼ G(xn; a = 1, b = 5), with ML and method of

moments. We do parameter estimations for cases N = 10, 40, 100, 200. We see that

method of moments fails to perform well when N is not large. However, as N increases,

we see that ML estimation and the method of moment estimates get closer. In cases

where N is not large, method of moments fail to perform well because of inaccurate

empirical moment estimates.

Inaccurate empirical moment estimates may even cause parameter estimates that

are not in the feasible region. For instance in Gamma distribution, the parameters a and

b are strictly positive. The method of moment estimators in Equation 4.3 and Equation

4.4 may return negative signed parameter estimates. On the other hand, maximum

likelihood approach gives reliable estimates, guaranteed to yield solutions in the feasible

region, since it is after all a constrained optimization approach. The downside of ML

42

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

b

a

N = 10

True parameters

MoMoment estimate

ML estimate

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

b

a

N = 40

True parameters

MoMoment estimate

ML estimate

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

b

a

N = 100

True parameters

MoMoment estimate

ML estimate

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

b

a

N = 200

True parameters

MoMoment estimate

ML estimate

Figure 4.1. Parameter estimation from N , i.i.d. data from G(xn; a = 1, b = 5). We

plot the likelihood surface G(x1:N , a, b) for each case.

is that, the optimization problem may not have a unique solution, resulting possibly

from the non-convexity of the objective function. So, in general it yields solutions

which are only locally optimal. Moreover, to have “good” local solutions we have to do

“good” initializations for the optimization problem. And of course, possibly lacking a

closed form solution, we have to apply some iterative solution methods like gradient

descent which have a computational burden. Whereas the method of moments give

us a solution in one step, without necessitating any initialization of any sort. In other

words, we directly obtain a solution for the parameters as a function of the empirical

moment estimates.

Recently, there has been work on method of moments based algorithms for learn-

ing latent variable models such as Hidden Markov Model [4, 15,16], Gaussian Mixture

43

Model [4,16], Latent Dirichlet Allocation [16,24], community membership models [25].

These methods are called spectral learning methods in the machine learning commu-

nity. The reason is that, one can use the observable moments to construct a matrix

whose eigen-decomposition gives information about the model parameters. In the next

section, we will exemplify the general methodology by learning a mixture model. Later

on, we will describe the spectral learning algorithms for learning time series models

such as HMM, mixture of Markov models and mixture of Hidden Markov models.

4.1. Spectral Learning for Mixture Models

In this section we describe the spectral algorithm in [4] for learning a simple

mixture model. Spectral learning algorithm for a simple mixture model is a good

example to sketch the general algorithm, with which we also learn sequential models

such as HMMs and mixture of Markov models. Let us first briefly introduce the mixture

model. The likelihood of a data item xn is defined as follows;

p(xn| O) =
K∑
k=1

p(hn = k)p(xn|hn = k,O) (4.9)

where, we follow the notation used in Section 3.1 for a general latent variable model.

We use hn ∈ {1, . . . K}, for latent cluster indicator variable for data item xn ∈ RL. The

model parameter θ is the observation matrix O(l, k) = E[xn,l|hn,k],∀n ∈ {1, . . . , N}.

Note that, O ∈ RL×K . According to the choice of the observation model, a column

O(:, k) of the observation matrix correspond to different parameters, as we did for

HMM observation matrix in Section 2.1.2 (e.g. if the observation model is Gaussian,

it corresponds to the mean vector of the k’th cluster O(:, k) = µk, or similarly if we

have a discrete observation model, we have O(:, k) = pk). To generate a data set x1:N ,

the generative process is as follows:

• For each data item xn, we sample a cluster indicator variable hn ∈ {1, . . . , K}

from p(hn), which is a generic discrete distribution.

• Conditioned on h1:N , we generate x1:N via p(xn|hn, O).

44

The corresponding graphical model is given in Figure 4.2.

hn xn O(:, k)

n = 1 . . . N
k = 1 . . .K

Figure 4.2. DAG of a mixture model.

To estimate the O matrix given the data x1:N , we can maximize the likelihood

p(x1:N |O):

O∗ = arg max
O

p(x1:N |O) = arg max
O

∑
h1:N

N∏
n=1

p(xn, hn|O) (4.10)

However, since the likelihood p(x1:N |O) is defined via a summation over the all possible

combinations of the cluster indicator variables h1:N , we have to resort to some iterative

optimization method. One of the most common ways is to iteratively maximize an EM

lower bound, as discussed extensively in the previous sections:

Q(O,Oold) = Ep(h1:N | x1:N ,Oold)[log(p(x1:N , h1:N |O))] (4.11)

However, as we discussed in Section 3.1, EM algorithm is dependent on good initializa-

tion. At this point we introduce a spectral learning algorithm for learning this mixture

model [4]. As discussed at the beginning of this chapter, the spectral learning algo-

rithms for latent variable models are based on method of moments. That is, we aim

to express the model parameters as a function of some observable moments. With this

aim, we use the second order moment E[x⊗x] and third order moment E[x⊗x⊗xi]. In

the following lemma, we establish a relation between the model parameters and these

observable moments.

Lemma 4.1.

E[x⊗ x] =Odiag(p(h))OT (4.12)

E[x⊗ x⊗ xi] =Odiag(O(i, :))diag(p(h))OT (4.13)

45

Note that we drop the subscript n to keep the notation uncluttered.

Proof. We write the definition of these moments in index notation:

E[xixj] =
∑
h

E[xi|h]p(h)E[xj|h]

=
∑
h

Oi,hp(h)Oj,h

Then, by definition of the matrix multiplication, we can see that the full E[x⊗x] matrix

is given by 4.12. Similarly; for triples E[x⊗ x⊗ xi],

E[xixjxk] =
∑
h

E[xi|h]p(h)E[xj|h]E[xk|h]

=
∑
h

Oi,hp(h)Oj,hOk,h

Again, by the definition of the matrix multiplication, we see that the full E[x⊗ x⊗ xi]

matrix is given by 4.13.

Lemma 4.2. Given that L ≥ K, and O has K linearly independent columns then,

Bi := (UTO)diag(O(i, :))(UTO)−1 = (UTE[x⊗ x⊗ xi]V)(UTE[x⊗ x]V)−1 (4.14)

where, U and V are respectively the first K left and right singular vectors of the second

order statistics matrix E[x⊗ x] as in [4].

Proof.

UTE[x⊗ x⊗ xi]V =UTOdiag(O(i, :))diag(p(h))OTV

=UTOdiag(O(i, :))(UTO)−1 UTOdiag(p(h))OTV︸ ︷︷ ︸
UTE[x⊗x]V

so, if we multiply both sides by (UTE[x⊗x⊗xi]V)−1 from right, we see that we obtain

the equality in Equation 4.14. Note that UTE[x ⊗ x ⊗ xi]V is invertible since it is

46

diagonal and full rank.

So, we conclude that we can estimate the model parameters O by doing eigen-

decomposition (hence the name spectral learning) of the matrix in the left hand side

of Equation 4.14, which can be approximately computed solely by using observable

moments: The eigenvectors are UTO, and eigenvalues are the i’th row of the observation

matrix O. Notice that the choice of K when computing the SVD of E[x⊗x] determines

the number of clusters K as well.

Let us denote the approximate (collected) second order moment E[x ⊗ x] with

P2, and third order approximate moment E[x⊗ x⊗ x] with P3. Estimation of P2 and

P3 from data x1:N is as follows:

P2 =
1

N

N∑
n=1

xn ⊗ xn =
1

N

N∑
n=1

xnx
T
n (4.15)

P3 =
1

N

N∑
n=1

xn ⊗ xn ⊗ xn (4.16)

Note that we can apply this moment estimator for a discrete distribution as well, if we

take discrete distribution as a multinomial distribution with number of trials parameter

as 1. In this case, the support of the distribution are vectors with of length L, with

only one element one and else zero.

Notice that the choice of Bi is arbitrary and in practice cause the algorithm to be

unstable for certain i values: For some i values the eigenvalues of Bi may get too close

to each other, which in turn causes instability in eigenvector estimation. To overcome

this problem, it is suggested in [4] that using E[x ⊗ x ⊗ x](η) =
∑L

i=1 ηiE[x ⊗ x ⊗ xi]

instead of using E[x ⊗ x ⊗ xi] would help to make the algorithm more robust, where

η ∈ RL×1. That is, when we compute Bi, we use E[x⊗x⊗x](η) instead of E[x⊗x⊗xi].

To choose an appropriate η vector, we generate random η until we get eigenvalues

separated enough (as judged by a certain threshold). We denote this auxiliary matrix

as B(η) instead of Bi. The algorithm for spectral learning a mixture models is given

47

in Figure 4.1.

Input: Data x1:N

Output: Estimated observation matrix Ô

1. Compute P2 and P3 from input data.

2. Compute rank K SVD of P2 such that P2 = UΣV T .

3. Compute B(η) = (UTP3(η)V)(UTP2V)−1

4. Compute the eigen-decomposition of B(η) = εΛε−1.

5. Set temp = Uε.

6. Normalize the columns of temp to have columns sum up to one and set Ô =

temp.

Figure 4.3. Spectral Learning Algorithm for Mixture Model.

Finally, note that although with Figure 4.1 we have a way for solving for theO ma-

trix solely from the observations x1:N , we do not have a guarantee on recovering O with

the right column order and scaling, since we recover it with an eigen-decomposition,

which has permutation and scale ambiguity. Column ordering, i.e. permutation ambi-

guity does not prevent us from doing clustering or classification.

However, scale ambiguity is a nuisance if we need to know the right scale. For

example, if have a discrete model, i.e. we know that columns of O must sum up to

one, then scaling ambiguity does not matter, since we can always normalize the output

of the algorithm. But, for instance if we have a Gaussian observation model, the scale

of the mean vectors is important. In such a case, we can still use this algorithm, by

reading the O matrix not from the eigenvectors but from the eigenvalues of B(η). If

set η such that it chooses a particular column of P3 e.g., η = [0 1 0 . . . 0]T , then it

is easy to see that, eigenvalues of Bi correspond to a row of O. We can also still use

general η, the details are given in [4], and we do not reproduce them here.

48

4.2. Spectral Learning for Hidden Markov Models

In this section we introduce a spectral learning algorithm for HMMs. We have

introduced a spectral learning algorithm for mixture models in the previous section,

where latent cluster indicator variables are independent. HMM is also a mixture model,

with the only difference being, the latent cluster indicators form a Markov chain. It

seems unclear how to immediately adapt the algorithm in the previous section for a

temporally connected mixture model such as HMM.

We will first introduce the spectral learning algorithm for HMMs in [15]. Then

we will also show that, it is possible to see HMMs as multi-view mixture models, and

specify the corresponding algorithm.

The main idea in [15], is to express the likelihood p(x1:T |θ) as a series of matrix

multiplications, so as to rewrite it as a series of similarity transformations of the actual

forward message updates, which can be expressed in terms of observable moments.

Let us first show that the likelihood p(x1:T |θ) can be written as a series of matrix

multiplications.

Claim: Given the observed sequence x1:T and HMM parameters θ = {O,A, π};

p(x1:T |θ) = 1TMMxTMxT−1
. . .Mxt . . .Mx1π (4.17)

where,Mx = Adiag(O(x, :)) and 1M is a vector of all ones of length M .

Proof.

p(x1:T |θ) =
∑
rT+1

∑
rT

p(rT+1|rT)p(xT |rT) . . .
∑
r2

p(r3|r2)p(x2|r2)
∑
r1

p(r2|r1)p(x1|r1)p(r1)︸ ︷︷ ︸
Mx1π︸ ︷︷ ︸

Mx2Mx1π︸ ︷︷ ︸
MxT

...Mx2Mx1π︸ ︷︷ ︸
1TMMxT

...Mx2Mx1π

49

Note that (Mx)ij = p(rt+1 = i|rt = j)p(xt|rt = j). This concludes the proof.

Next, we apply some similarity transformations on the messagesMx, so that the

complete likelihood expression can be computed via observable moments E[x1],E[x1 ⊗

x2] and E[x1 ⊗ x2 ⊗ x3].

p(x1:T |θ) =1TMMxTMxT−1
. . .Mxt . . .Mx1π

= 1TM(UTO)−1︸ ︷︷ ︸
:=bT∞

(UTO)MxT (UTO)−1︸ ︷︷ ︸
:=BxT

. . . (UTO)Mxt(U
TO)−1︸ ︷︷ ︸

:=Bxt

. . .

× . . . (UTO)Mx1(U
TO)−1︸ ︷︷ ︸

:=Bx1

(UTO)π︸ ︷︷ ︸
:=b1

=bT∞BxTBxT−1
. . . Bxt . . . Bx1b1 (4.18)

Note that, we have to choose U such that UTO is invertible as discussed in the previous

section. The next thing is to express the messagesMx, so that they can be computed

via observable moments. Let us denote the observable moments as follows:

(P1)i :=(E[x1])i

(P2,1)ij :=(E[x2 ⊗ x1])i,j

(P3,l,1)ij :=(E[x3 ⊗ x2,l ⊗ x1])i,j

We establish the connection between these observable moments and the model param-

eters in the following lemma:

Lemma 4.3.

P1 =Oπ (4.19)

P2,1 =OAdiag(π)OT (4.20)

P3,x,1 =OMxAdiag(π)OT (4.21)

50

Proof. The first expression is easy to prove since,

P1 =
∑
k

O(:, k)πk

so, in matrix notation P1 = Oπ. For the second moment expression, we rewrite it in

the index notation:

P2,1 =
∑
r2

p(x2|r2)
∑
r1

p(r2| r1) p(r1)p(x1|r1)︸ ︷︷ ︸
diag(π)OT︸ ︷︷ ︸

Adiag(π)OT︸ ︷︷ ︸
OAdiag(π)OT

where, we use the definition of the matrix multiplication to convert the expression from

index notation to matrix notation. Finally we have:

P3,l,1 =
∑
r3

p(x3|r3)
∑
r2

p(r3|r2)p(x2 = l|r2)
∑
r1

p(r2| r1) p(r1)p(x1|r1)︸ ︷︷ ︸
diag(π)OT︸ ︷︷ ︸

Adiag(π)OT︸ ︷︷ ︸
MlAdiag(π)OT︸ ︷︷ ︸

OMlAdiag(π)OT

Now, we are ready to express the messages b1, b∞, Bx in terms of the observable

moments P1, P2, P3.

Lemma 4.4.

b1 = UTP1 (4.22)

51

Proof.

b1 =UTP1

=UTOπ

This proof is easy, due to the fact that P1 =
∑

k O(:, k)πk.

Lemma 4.5.

b∞ = (V TP T
2,1U)−1V TP1 (4.23)

Proof. We first express P T
1 as follows:

P T
1 =1TMAdiag(π)OT

=1TM(UTO)−1(UTO)Adiag(π)OT

=1TM(UTO)−1UTP2,1

Note that, the expressions for P1 and P2,1 can be easily verified using a similar approach

we used for 4.17.Then we plug this expression in:

bT∞ =P T
1 V (UTP2,1V)−1

=1TM(UTO)−1UTP2,1V (UTP2,1V)−1

=1TM(UTO)−1

Lemma 4.6.

Bx = UTP3,x,1V (UTP2,1V)−1 (4.24)

52

Proof. Let us express UTP3,x,1V as follows:

UTP3,x,1V =UTOMxAdiag(π)OTV

=UTOMx(U
TO)−1(UTO)Adiag(π)OTV

=UTOAx(U
TO)−1UTP2,1V

So, we conclude that Bx = UTP3,x,1V (UTP2,1V)−1.

Note that we can estimate with P1 = 1
N

∑N
n=1 xn and P2, P3 with Equation 4.15

and Equation 4.16. As done in [4], we choose U and V matrices such that P2 = UΣV T ,

where U and V consist of the first K, respectively, left and right singular vectors of

P2. Notice that, the resulting algorithm from the discussion in this section is able to

estimate p(x1:T |θ), solely by using some observable moments.

However, we did not specify a parameter estimation procedure to estimate θ. In

the next section, we will show that, we can in fact also recover the HMM parameters

O and A with some modification on the Figure 4.1.

4.2.1. Parameter Learning in HMMs

In order to estimate the model parameters θ of a hidden Markov model, we can

in fact use an algorithm similar to 4.1 as given in [4]. With this aim let us define

P3,1 := E[x3 ⊗ x1].

Lemma 4.7.

P3,1 = OAAdiag(π)OT (4.25)

53

Proof. As we did for P2,1, we consider the index notation;

P3,1 =
∑
r4

p(x3| r3)
∑
r2

p(r3|r2)
∑
r1

p(r2|r1) p(r1)p(x1|r1)︸ ︷︷ ︸
diag(π)OT︸ ︷︷ ︸

Adiag(π)OT︸ ︷︷ ︸
AAdiag(π)OT︸ ︷︷ ︸

OAAdiag(π)OT

Given this observable moment and P3,x,1 from the previous section, we can in fact

recover the model parameters. Let us establish this with the following lemma:

Lemma 4.8.

Bx :=(UTOA)diag(O(x, :))(UTOA)−1

=UTP3,x,1V (UTP2,1V)−1 (4.26)

Proof. Let us express UTP3,x,1V as follows:

UTP3,x,1V =UTOMxAdiag(π)OTV

=UTOAdiag(O(x, :))Adiag(π)OTV

=UTOAdiag(O(x, :))(UTOA)−1(UTOA)Adiag(π)OTV

=(UTOA)diag(O(x, :))(UTO)−1UTP3,1V

So we conclude that Bx can be recovered via UTP3,x,1V (UTP2,1V)−1.

Notice that Bx is an eigen-decomposition form where eigenvalues are in fact x’th

row of O and eigenvectors are UTOA. As we did similarly in previous sections, we set

P3,1 = UΣV T . The algorithm for parameter estimation in HMM is given in Figure

4.2.1.

54

Input: Sequence x1:T

Output: Estimated HMM parameters θ̂ : (Ô, Â).

1. Estimate P3,1 and P3,2,1 from the sequence x1:T .

2. Compute U and V from P3,1 = UΣV T using SVD.

3. Estimate the first row of Ô matrix and R = ÛTOA matrix by doing the

eigen-decomposition B1 = Rdiag(O(1, :))R−1

4. For l ∈ {2, . . . , L} set Ôl,: = R−1B(l)R.

5. Set temp = (UÔ)−1R

6. Normalize temp to have columns sum up to one, and set Â = temp.

Figure 4.4. Spectral Learning Algorithm for HMM.

Note that we did not use η in Section 4.1, for the sake of simplicity. In order

to increase the robustness of the algorithm, in practice it is necessary to use P3,2,1(η)

instead of P3,x,1. The details on usage of η are given in detail in [4].

Also notice that the ordering of the eigenvalues of Bx is dependent upon the

ordering of its eigenvectors. The reason for using R in steps 3 and 4 is to preserve the

consistency in the ordering of the eigenvalues. Finally, note that when computing the

empirical moments, despite the notation P3,2,1, we use all of the observations in the

sequence x1:T (not just the first three) since the moments we compute are based on

the assumption that the underlying latent Markov chain has converged to a stationary

distribution [15]. For instance, in empirical moment equations (e.g. Equation 4.25), the

distribution π is actually not the first state distribution, but the stationary distribution

that the Markov chain converges. So, in fact what we do is to see HMM as a multi-view

mixture model, with following conditional expectations (observation matrices):

E[x1|h] =Odiag(π)ATdiag(π)−1 (4.27)

E[x2|h] =O (4.28)

E[x3|h] =OA (4.29)

55

Then, we see that E[x3 ⊗ x1] = E[x3|h]diag(π)E[x1|h]T = OAAdiag(π)OT , which

is accordance with 4.25. Also, E[x3 ⊗ x2,l ⊗ x1] = OAdiag(O(l, :))Adiag(π)OT =

OMlAdiag(π)OT , which is also in accordance with 4.21.

4.3. Spectral Learning for Mixture of Markov Models

We introduced the mixture of Markov models in Section 2.2.1. As indicated in

that chapter, learning a mixture of Markov models would require to use local search

algorithm such as EM. With spectral learning, we aim to estimate the transition matrix

Ak of each cluster, solely based on some observable moments, in a local optima free

fashion.

As we discussed in the previous sections, according to the method of moments

described in [4], the approach is to express the moments of the distribution as a matrix

multiplication (or possibly tensor as in our case), so that an eigen-decomposition form

which reveals information about the model parameters can be computed as a function

of the observable moments.

In order to derive a spectral learning algorithm for a mixture of Markov models

following this methodology, since we have three dimensional tensor p(xt| xt−1, h), we

use the tensor algebra used in [17]. Let us start with the tensor notation: The tensor

multiplication Z = X ×k Y is defined as follows:

Z(i2, . . . , iN , j2, . . . , jM) =
∑
k

X(k, i2, . . . , iN)Y (k, j2 . . . , jM) (4.30)

where Z ∈ RI2×···×IN×J2×···×JM , X ∈ RI1×···×IN , Y ∈ RJ1×···×JN . Note that, the tensor

multiplication in Equation 4.30 can also be on multiple indices as in Equation 4.35.

The diagonalization operation is important to express joint distributions. The

symbol�k diagonalizes a particular index k times. For example, p(�2h) = p(h)δ(h, h′) =

diag(p(h)), where δ(h, h′) = 1 if h = h′, and else zero. Similarly, p(�3h) = p(h)δ(h, h′, h′′).

56

Let us consider p(x1, x2) to illustrate both tensor multiplication and diagonalization:

p(x1, x2) =
K∑
k=1

p(x2|x1, h = k)p(x1|h = k)p(h = k)

=(p(x2| �2 x1, h)×h,x1 p(x1| �2 h))×h p(h) (4.31)

where, we see the tensor algebra equivalent of the regular probability notation. Note

that, we diagonalize x1 and h, in order to have element wise multiplication with tensor

multiplication. The next thing we need is the mode-specific tensor inversion. For this,

we need to define an identity tensor with respect to an index set: Iσ is the identity

tensor with respect to the index set σ iff,

X ×σ Iσ = X (4.32)

The inverse tensor of X with respect to identity tensor Iσ is defined as follows:

X−1 ×w X = Iσ (4.33)

Here, w = X\σ and X is the set of all indices of X. We will use the tensor algebra

to show that, for a mixture of Markov models, we have to use at least a fifth order

moment to be able to have an eigen-decomposition of the form,

B(i, j, k) := (A(:, i, :)×h A(j, k, :))×h A−1(:, i, :) (4.34)

which reveals the parameters as eigenvectors and eigenvalues [4]. We use the MAT-

LAB array notation for the transition matrix so that A(:, :, k) := Ak. For the sake of

simplicity, we assume that A(:, i, :) is invertible.

In practice, we use SVD to deal with invertibility as done in previous sections

and [4,15,17]. To show the impossibility of identifying A from low order moments, let

57

us first consider the third order observable moment:

p(x1, x2, x3) = ((p(x3|x2, h)×x2,h p(�2x2| x1,�2h))×x1,h p(�2x1|h))×h p(h) (4.35)

Note that since the observation model is discrete, E[x1 ⊗ x2 ⊗ x3] = p(x1, x2, x3). In

this observable moment, the variables x2 and x1 are shared variables, on which we

have products. To have a form similar to Equation 4.34, where the products are solely

on h, we have to clamp the shared variables x1 and x2 to particular values. This

reduces the third order observable moment to a vector, on which we cannot do an

eigen-decomposition. So, we move up and we consider the fourth order moment. We

clamp the shared variables x3 and x2 to particular values j and i:

p(x4, x3 = i, x2 = j, x1) = (p(x4|x3 = i, h)×h p(x3 = i|x2 = j,�2h))×h p(x2 = j, x1, h)

= [(p(x4|x3 = i, h)×h p(x3 = i|x2 = j,�2h))×h p(x
′

3|x2 = j, h)−1]

×x′3 [p(x
′

3|x2 = j, h)×h p(x2 = j, x1, h)]︸ ︷︷ ︸
p(x
′
3,x2=j,x1)

(4.36)

From Equation 4.36, one can see that;

B(x4, x
′

3, x3 = i, x2 = j) =(p(x4|x3 = i, h)×h p(x3 = i|x2 = j,�2h))×h p(x
′

3|x2 = j, h)−1

=(A(:, i, :)×h A(i, j, :))×h A(:, j, :)−1

=p(x4, x3 = i, x2 = j, x1)×x1 p(x
′

3, x2 = j, x1)
−1 (4.37)

At this stage it appears that we can obtain an eigen-decomposition form by using the

fourth and third order moments. In this case, the eigenvectors are p(x4| x3 = i, h) =

p(x
′
3|x2 = j, h) and eigenvalues are p(x3 = i| x2 = j, h). However, we realize that

following this approach there exists no way to resolve the permutation ambiguity since

the ordering of the eigenvalues are arbitrary. Therefore, it is not possible for us to re-

cover the transition matrix of a cluster since columns of an estimated transition matrix

can be permuted with those of another cluster’s transition matrix. The condition to

resolve this nuisance is to have the indices of the eigenvalue matrix independent of the

58

eigenvalues, which can ensure the correctness in the columns of the transition matrices.

For this reason we consider the fifth order moment. We clamp the shared variables

x1, x2, x4.

p(x5, x4 = i, x3, x2 = j, x1 = k) =

[(p(x5|x4 = i, h)×h p(x4 = i|x3,�2h))×h,x3 p(�2x3|x2 = j,�2h)]×h p(x2 = j, x1 = k, h)

= [(p(x5|x4 = i, h)×h p(x2 = j| x1 = k,�2h))×h p(x
′

5|x4 = i, h)−1]

×x′5 ([p(x
′

5|x4 = i, h)×h p(x4 = i|x3,�2h)]×h,x3 p(�2x3, x2 = j, h))︸ ︷︷ ︸
p(x
′
5,x4=i,x3,x2=j)

(4.38)

Then, we see that the eigendecomposition form B(i, j, k) is;

B(x5, x
′

5, x4 = i, x2 = j, x3 = k) =

(p(x5|x4 = i, h)×h p(x2 = j| x1 = k,�2h))×h p(x
′

5|x4 = i, h)−1

=(A(:, i, :)×h A(j, k, :))×h A−1(:, i, :)

=p(x5, x4 = i, x3, x2 = j, x1 = k)×x3 p(x
′

5, x4 = i, x3, x2 = j)−1 (4.39)

Note that, although x3 is a shared variable we do not clamp it since it does not spoil

the eigen-decomposition form B. Now, the good news is, for differing x4, we have the

same eigenvalues if we use the same x2 and x1. Therefore, we can use the eigenvalue-

eigenvector correspondence to ensure the consistency in the columns of the transition

matrix estimates (In practice, eigenvalues for every B(i, j, k) may not be the same, but

one can order the eigenvectors according to the eigenvalue ordering.).

However, the downside of it is that we have to use the fifth order moment. To

have accurate estimates of moments this order, we need large number of samples. In

this respect, it is simply not practical to use this method, as in Equation 4.39 with the

fifth order moment. In the next section, we propose an alternative scheme for learning

mixture of Markov models, to reduce the sample complexity.

59

4.3.1. Spectral Learning for a Mixture of Dirichlet Distributions

Suppose we place a prior distribution for transition matrices on the class condi-

tional likelihood p(xn|Ahn , hn). Placing a Dirichlet prior p(Ahn) ∼ Dirichlet(β, . . . , β)

would result in a Dirichlet posterior:

p(Ahn|xn, hn) ∝ p(xn|Ahn , hn)p(Ahn)

= Dirichlet(cn1,1 + β − 1, cn1,2 + β − 1, . . . , cnL,L + β − 1)

where, cnl1,l2 stores the state transition counts of sequence xn. So, we can indeed char-

acterize a sequence generated by a Markov model with a Dirichlet distribution, since

Dirichlet distribution is the posterior of the transition matrix Ahn . Setting β = 1

(having a uniform prior), we see that the posterior distribution becomes

p(Ahn| xn, hn) = Dirichlet(cn1,1, c
n
1,2, . . . , c

n
L,L).

Therefore, we can treat a normalized sufficient statistics matrix as a sample from the

posterior of the transition matrix. In the mixture of Markov models, every sequence

xn has a distinct cluster label hn. So, sufficient statistics matrix of each sequence

is indeed a sample from the posterior of Ahn . Therefore, we can effectively cluster

sequences by using normalized second order statistics matrices instead of the sequences

themselves. A spectral learning algorithm for a mixture of Dirichlet distributions would

be simpler compared to directly learning a mixture of Markov models, since the former

requires a second order moment (sufficient statistics matrix) whereas the latter requires

a fifth order moment, as shown in Section 4.3. Let us denote an observed second order

statistics (vectorized) matrix by sn ∈ R(L×L)×1. Note that sn,l1,l2 = cnl1,l2/(
∑

l1,l2
cnl1,l2).

The likelihood of a sufficient statistics observation is defined as follows:

p(sn|α) =
K∑
k=1

p(hn = k)Dirichlet(sn, α(:, k)) (4.40)

60

hn sn α(:, k)

k = 1 . . .K
n = 1 . . . N

Figure 4.5. DAG of the mixture of Dirichlet distributions.

where, α ∈ R(L×L)×K is the matrix that stores the Dirichlet parameters in its

columns. We write the second and third order observable moments as follows;

E[sn ⊗ sn] =
K∑
k=1

p(hn = k)E[sn ⊗ sn|hn = k]

E[sn|hn]diag(p(hn))E[sn|hn]T

=αdiag(p(hn))αT (4.41)

E[sn ⊗ sn ⊗ sn,i] =
K∑
k=1

p(hn = k)E[sn ⊗ sn ⊗ sn,i|hn = k]

=E[sn|hn]diag(E[sn,i|hn])diag(p(hn))E[sn|hn]T

=αdiag(α(i, :))diag(p(hn))αT (4.42)

where, ⊗ is the outer product operator and sn,i denote the i’th entry of the observed

statistics vector sn. Then, following [4], we can conclude that the eigenvectors of the

auxilary matrix,

Bi =(UTE[sn ⊗ sn ⊗ sn,i]V)(UTE[sn ⊗ sn]V)−1

=(UTα)diag(α(i, :))(UTα)−1 (4.43)

Based on the fact that E[sn,i|hn = k] = α(i, k)/α0, where α0 =
∑

i α(i, k), we can

in fact recover the Dirichlet parameters α(:, k) for each cluster up to a scaling factor

α0 (as done in [24], we fix α0 to a particular value), i.e. the α matrix by doing the

eigendecomposition of Bi. We compute the SVD, E[sn⊗sn] = UΣV T to estimate U and

V as done in [4]. Finally, note that in order to increase the robustness of the algorithm,

we use E[sn ⊗ sn ⊗ sn](η) =
∑L×L

i=1 ηiE[sn ⊗ sn ⊗ sn,i] instead of using E[sn ⊗ sn ⊗ sn,i],

where η ∈ R(L×L)×1, which results in using B(η). The details on choosing η can be

found in [4]. We give the overall sequence clustering algorithm in Figure 4.3.1.

61

Input: Sequences x1:N

Output: Clustering assignments ĥ1:N

1. Extract the sufficient statistics sn from xn, ∀n ∈ {1, . . . , N}

2. Compute empirical moment estimates for E[sn ⊗ sn] and E[sn ⊗ sn ⊗ sn]. Com-

pute U and V such that E[sn ⊗ sn] = UΣV T .

3. Estimate α by doing eigen-decomposition of B(η).

4. ∀n ∈ {1, . . . N}, ĥn = arg maxk Dirichlet(sn, α(:, k)).

Figure 4.6. Algorithm for clustering sequences via spectral learning of mixture of

Dirichlet distributions.

4.4. Incorporating Spectral Learning for learning HMM mixtures

As discussed in Section 3.4, learning a mixture HMMs can be an expensive task

with expectation maximization algorithm, since we have to do forward-backward re-

cursions for each sequence at each iteration of EM. In this section, we propose a novel

algorithm for clustering HMMs. According to the spectral method in Section 4.2, we

can learn a HMM just by using some low order observable moments. The proposed

HMM clustering algorithm replaces the parameter estimation step (M-Step) in the

hard clustering algorithm in Section 3.4 with a spectral learning algorithm. This way,

required computations for parameter estimation step become K low-rank SVDs and K

eigen decompositions, which is substantially cheaper compared to N forward-backward

recursions. The proposed algorithm is given in Figure 4.4.

At the start of the algorithm, we collect the un-normalized empirical statistics

P̃ n
2,1 =

Tn∑
t=2

xt,n ⊗ xt−1,n (4.44)

P̃ n
3,2,1 =

Tn∑
t=3

xt,n ⊗ xt−1,n ⊗ xt−2,n (4.45)

62

Input : Sequences x1:N , Number of Cluster K

Output : Cluster assignments h1:N .

for n = 1→ N do

1. Collect unnormalized statistics P̃ n
2 and P̃ n

3

end for

Randomly initialize h1:N

for e = 1→ maxiter do

for k = 1→ K do

Compute P k
2,1 and P k

3,2,1

θk ← SpectralHMM(P k
2,1, P k

3,2,1) - (Algorithm in Figure 4.2.1)

end for

for n = 1→ N do

hi = arg maxk p(yn|θk)

end for

end for

Figure 4.7. Algorithm for learning a mixture of HMMs with spectral learning.

Then, according to the cluster assignments h1:N at iteration e, we use the corre-

sponding P̃ n
3,1 and P̃ n

3,2,1 to compute the empirical statistics of the cluster k. That is,

we set

P k
2,1 =

1

Ñ

∑
n:h1:N=k

P̃ n
3,1 (4.46)

P k
3,2,1 =

1

Ñ

∑
n:h1:N=k

P̃ n
3,2,1 (4.47)

where Ñ is the appropriate normalizer so that P k
2,1 and P k

3,2,1 are probability distribu-

tions. And then we input these empirical statistics to the spectral learning algorithm

given in Figure 4.2.1). Note that, since we input the empirical statistics, we skip the

first step of the algorithm in Figure 4.2.1.

63

Note that, unlike the EM algorithm for mixture of HMMs, the computational

complexity of the parameter estimation step is independent from the number of se-

quences N , since we extract the empirical statistics at the beginning of the algorithm,

and use them according to the latest update of the cluster indicator variables h1:N .

This heuristic scheme gives us a very fast and simple algorithm. In Section 5.2.2, we

compare the speed and performance of this algorithm with expectation-maximization

approach. Finally note that, we give the number the number of cluster K as an input

to the algorithm. In following section, we propose an algorithm that automatically

determines the number of clusters.

4.4.1. Learning Infinite Mixtures of HMMs using spectral learning

It is possible to extend the algorithm 4.4 to automatically find the number of

clusters K. In order to do that, we consider an infinite mixture of HMMs. To derive

a learning algorithm for an infinite mixture of HMMs, one has to take an intractable

integral over the HMM parameters. Incorporating spectral methods in learning infinite

mixtures of HMMs provides a natural way of handling with the arising intractable

integrals. To illustrate the difficulty in learning an infinite mixture of HMMs, let us

first consider the mixture model in Section 4.1, where the parameters of the k’th cluster

is θk = O(:, k). We place a prior on the model parameters p(θ1:K) =
∏K

k=1 p(θk).

Moreover, let us place a Dirichlet prior on the mixing proportions π := p(hn), π ∼

Dirichlet(α/K, . . . , α/K). Then, one can show that;

p(hn = k|h−n1:N ,xn) =
1

Z

∫
p(xn, h1:N | θ, π)p(θ)p(π)dθdπ

=
N−nk + α/K

N + α− 1

∫
p(xn|θk)p(θk|{xl : l 6= n, rl = k})dθk (4.48)

where, p(θk|{xl : l 6= n, rl = k}) is the posterior of the parameter of cluster k, with

data assigned to cluster k (except data item n). The notation N−nk denotes the number

of data items in cluster k except data item n. We use the same notation for excluding

variables as well. For example x−n1:N denotes all x1:N except xn.

64

Now, let K∗ denote the number of occupied clusters. So we have K −K∗ empty

clusters. Let us lump all the empty clusters together. So, assignment to an empty

cluster has the probability;

p(hn = k|h−n1:N ,xn) =
αK−K

∗

K

N + α− 1

∫
p(xn|θk)p(θk)dθk (4.49)

Let us take K →∞. Then we have the following densities:

• For an assignment to an occupied cluster, ∀k ≤ K:

p(hn = k|h−n1:N ,x1:N) =
N−ik

N + α− 1
p(xn|{xl : l 6= n, rl = k}) (4.50)

• For an assignment to an empty cluster, ∀k > K:

p(hn = k|h−n1:N ,x1:N) =
N−ik

N + α− 1
p(xn) (4.51)

For a model with conjugate prior on θ1:K the integrals required for Equation 4.50

and Equation 4.51 are tractable. For instance, for a Gaussian mixture model with

observation model θk = µk, and p(µk) = N (µk;µ0, σ
2
0), these integrals are tractable.

However, for a mixture of HMMs, Equation 4.50 and Equation 4.51 require in-

tegrating over the model parameters θ = (A,O) and summing over the latent state

sequences rn. This joint sum-integral is not tractable since we no longer have the con-

ditional independence properties of the latent state sequence rn, due to the fact that

we integrate over the transition matrix A, which makes the latent state variables rn

dependent. So, we conclude that a conventional collapsed Gibbs sampler for an infinite

mixture of HMMs is not feasible. Assuming that the sequences are long-enough, we

make the following approximation:

∫
p(xn|θk)p(θk|{xl : l 6= n, rl = k})dθk ≈ p(xn|θspectralk) (4.52)

where, the right hand side is the likelihood of the sequence for the HMM parameters

65

corresponding to cluster k, estimated with spectral learning algorithm given in algo-

rithm 4.2.1. This approximation is sensible since, in real world scenarios the sequences

are long enough to make the posterior distribution of the HMM parameters θk peaked

enough. Next, we consider the Equation 4.51 for creating new clusters. This requires

the marginal likelihood p(xn) of a sequence xn. There are well established methods in

the Bayesian inference literature to compute the marginal likelihood [26]. In a clus-

tering algorithm, marginal likelihoods p(xn), n ∈ {1, . . . , N} can be inferred before

starting the algorithm and then be utilized in each iteration without having need to

recompute them in each iteration. Having made these observations, we propose the

algorithm given in Figure 4.4.1. Note that we dropped the multiplicative terms in front

Input : Sequences x1:N , Number of Cluster K

Output : Cluster assignments r1:N .

for n = 1→ N do

1. Collect unnormalized statistics P n
2 and P n

3

2. Compute marginal likelihood p(xn)

end for

Initialize hn = 1, for i = 1, . . . , N

for e = 1→ maxiter do

for k = 1→ K do

Compute P k
2,1 and P k

3,2,1

θk ← SpectralHMM(P k
2,1, P k

3,2,1) - (Algorithm in Figure 4.2.1)

end for

for n = 1→ N do

hn = arg maxk[p(xn|θk) p(xn)]

if hn > K then

K = K + 1

end if

end for

end for

Figure 4.8. Learning an infinite mixture of HMMs with spectral learning

66

of the Equation 4.50 and Equation 4.51 since their contribution is neglible compared

to the result of the integral. Note that algorithm in Figure 4.4.1 has the same procedu-

ral steps with the hard clustering algorithm for Dirichlet processes recently proposed

in [19].

67

5. EXPERIMENTS AND RESULTS

In this chapter, the results are organized into three main topics. First, we give

the mixture of Markov model related sequence clustering results. Secondly, we give the

mixture of HMMs related sequence clustering results. Lastly, we present the generative

vs. discriminative model related sequence classification results.

5.1. Sequence Clustering via mixture of Markov models

In this section, we give our results corresponding to our spectral learning algo-

rithm for mixture of Markov models in Section 4.3. We compare the related learning

algorithms to learning mixture of Markov models on synthetic data and network flow

data. We also show on motion capture data that the algorithm in Section 4.3 can be

used for finding the number of clusters in data.

5.1.1. Synthetic Data

We generated 100 synthetic data sets from mixture of Markov models. Each data

set consist of 60 sequences divided equally among 3 clusters. The transition matrices

of Markov models are generated randomly from a uniform Dirichlet distribution, i.e.

A(:, j, k) ∼ Dirichlet(1, . . . , 1).

We compare the clustering accuracies of the spectral learning algorithms in Sec-

tion 4.3, Section 4.3.1 and expectation maximization algorithms for mixture of Markov

models and mixture of Dirichlet distributions (Derivation of the EM algorithm for mix-

ture of Dirichlet distributions can be found in Appendix C). The clustering accuracy

is defined as the ratio of true cluster assignments in a data set and calculated by re-

solving the permutation ambiguity introduced by the clustering processes. After each

clustering, the estimated assignments are compared with the true assignments for all

possible permutations of cluster identifiers (K! permutations for K clusters), and the

maximum ratio is chosen.

68

Figure 5.1 shows the average accuracies of the methods in the data sets with

respect to different sequence lengths. In the experiments each data set is used 6 times

where the sequences are cropped at different lengths and the number of clusters in the

data is given to the algorithms apriori.

30 90150 300 600 1200
60

65

70

75

80

85

90

95

100

C
lu

st
er

in
g

 A
cc

u
ra

cy
 %

Sequence Length

Spectral MMarkov

Spectral MDirichlet

EM MMarkov

EM MDirichlet

Figure 5.1. Comparison of clustering accuracies on synthetic data.

We see that except when the sequences are short, the spectral learning algorithm

for mixtures of Dirichlet approach outperforms other algorithms. As expected, spectral

learning for Mixture of Markov model algorithm fails to perform well in the absence

of abundant data. EM algorithms do not to perform as well as the spectral Mixture

of Dirichlet algorithm on the average, because of the possible unlucky random ini-

tializations. We conclude that spectral learning algorithm for a mixture of Dirichlet

distributions perform better than EM algorithms since it does not require good initial-

ization. It is better than the spectral learning algorithm for mixture of Markov models

since it requires less data for accurate moment estimates.

5.1.2. Real World Data

We conducted real world experiments on a network traffic data set, collected by

recording the network activity at Boğaziçi university. The observations in the data

set are network flows, where a network flow is defined as a series of network packets

69

transferred between two IP-Port pairs. We select the length and the transfer direction

of a packet as features. By quantizing the packet sizes into five levels, and adding

direction information, we produce an alphabet of 10 discrete symbols. The flows are

represented as arrays of those symbols, and assumed to be generated by a Markov

model. Hence, our data set is assumed to be generated by a mixture of Markov models.

On top of Figure 5.2, we see the multidimensional scaling of a fraction of the data

set, which contains 2 clusters, found by the spectral mixtures of Dirichlet algorithm,

mapped to a two dimensional space for visualization. On bottom are the sufficient

statistics, i.e. 10 × 10 state transition counts of 24 randomly selected flows. We see

that flows from the blue cluster (crosses) has more mass assigned to the top left corner,

whereas the red cluster (circles) tend to have more mass around the center.

In our flow classification experiment, we try to infer the web application to

which the flow belongs. We gathered the true application labels for the data by using

IPOQUE [27] application classification software. This software uses deep packet in-

spection technique, which is the most accurate known way of application detection [28],

and we accept its results as our ground truth.

We choose the class conditional densities of flows as a mixture of Markov model.

In other words, each web application is composed of different types of flows. We

tried to classify two different applications: Skype and BitTorrent. 1574 Skype and 415

BitTorrent flows are divided into training and test sets equally and our algorithms

estimated mixture model parameters for each application type. In classification, a test

flow is labeled according to its likelihood under the two mixture models. Table 5.1

shows the classification accuracy of the three different algorithms.

5.1.3. Finding number of clusters

Using the spectral method provides a natural way for finding the number of

clusters. Since the second order moment matrix E[sn ⊗ sn] is a sum of rank one

70

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

2324

a. Multi Dimensional Scaling of the data to 2D.

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

b. Multi Dimensional Scaling of the data to 2D.

Figure 5.2. Exploratory data analysis on network traffic data.

matrices, we can determine the number of clusters by using singular values:

E[sn ⊗ sn] = αdiag(p(h))αT =
K∑
k=1

p(h = k)α(:, k)α(:, k)T (5.1)

71

Table 5.1. Classification accuricies of three clustering algorithms on network traffic

data.

Algorithm Classification Accuracy

No Clustering 63.41%

Mixture of Dirichlet (Spectral) 84.85%

Mixture of Dirichlet (EM) 79.39%

Mixture of Markov (EM) 83.51%

We observe that the ratio of the consecutive singular values σK/σK+1 is a sensible

measure for determining the number of clusters K. We plot σK/σK+1 vs K curves.

To justify the number of clusters found by the algorithm, we also plot example cluster

assignments.

In Figure 5.3a, we used network data used in Figure 5.2 for exploratory data

analysis. We see that that maximum σK/σK+1 is attained when K = 2, as we also saw

a two cluster behavior in the previous section. In Figure 5.3b, we used synthetic data

with 25 clusters. We see that the biggest jump corresponds to cutting off from the first

and 25’th singular values. Since having only one cluster would be trivial, we identify

the number of clusters as 25. In Figure 5.3c and Figure 5.3d, we used respectively,

sequence sets Simple Walk vs Run and, Run(#9) vs Run/Jog(#35) from CMU motion

capture dataset [29], as used in [30]. The data in its original form is 62 dimensional and

continuous. We discretize the data using vector quantization by k-means clustering.

To demonstrate that maximum of the consecutive singular values ratio vector indeed

gives the number of clusters, we also show the example cluster assignments in Figure

5.3e and Figure 5.3f, where each column shows the data items in the same cluster. In

Figure 5.3e, we see that the algorithm successfully identifies the clusters, where each

cluster has distinctive features. We see that even if the second cluster has only one

data item in it, the algorithm successfully identifies it as a cluster.

72

0 10 20 30 40 50 60 70
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Number of Clusters K

σ
k
 /

 σ
k

+
1

a. Network Traffic data.

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

Number of Clusters K

σ
k
 /

 σ
k

+
1

b. Synthetic data.

1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

Number of Clusters K

σ
k
 /

 σ
k

+
1

c. Simple Walk vs Run

1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

35

40

45

Number of Clusters K

σ
k
 /

 σ
k

+
1

d. Run(#9) vs Run/Jog(#35)

e. Simple Walk vs Run cluster representa-

tives.

f. Run(#9) vs Run/Jog(#35) cluster repre-

sentatives.
Figure 5.3. Finding the number of clusters on various data types.

73

5.2. Sequence clustering via learning mixtures of HMMs

In this section, we present our results obtained with the algorithms we propose in

Section 4.4. We first present the results in our work [5], based on sequence clustering

using a finite mixture of HMMs. We then present our work in [6], which is based on

sequence clustering using an infinite mixture of HMMs. We use clustering to increase

the classification accuracy of human action sequences.

5.2.1. Toy Problem

As a toy problem, we clustered shape sequences, recorded by manual mouse

clicking. We input the first temporal derivative of the 2D coordinates to the algorithm.

We used a 2D Isotropic Gaussian emission HMM. Example clustering results obtained

with the proposed algorithm are given Figure 5.4 and Figure 5.5. Sequences that are

assigned to the same cluster are plotted on top of each other. We have observed that

our method converges to the true solution very fast and accurately.

Figure 5.4. Clustering handwritten L, V, 7.

74

Figure 5.5. Clustering handwritten 7 and 1.

5.2.2. Clustering Motion Capture Data with Finite Mixture Models

We tested our algorithm also for clustering motion capture data. We compared it

with soft and hard versions of the EM algorithm presented in Section 3.4. We used the

database HDM05 [31]. We input the first temporal derivative of the 3D trajectories of

32 joints. The sequences are on average of length 500, and L = 96 dimensional. We

tested on several binary clustering scenarios for different action pairs. We used aM = 3

state HMM. The observation model is taken as multidimensional isotropic Gaussian.

In Table 5.2, we compare the average clustering accuracies, maximum accuracy, time

required for one iteration, and average convergence time, for N = 20 “kicking” and

“punching” actions, for 10 restarts with random initializations for cluster indicator

variables h1:N . We have seen that EM tends to get stuck in local optima because of poor

parameter initialization, which results in sub-optimal clustering accuracy. Since the

spectral method does not suffer from initialization problem, this algorithm reaches the

optimal clustering more often than EM. In addition to the improvement in clustering

accuracy, the real gain is in computational effort. The time required per iteration is

almost two times smaller than the hard version of EM and three times smaller than the

soft version of EM. Average number of iterations required for EM seems to be less than

spectral method. This makes sense since, when initialized with a “bad” partitioning,

EM tends to converge to local optima rather quickly, while the spectral learning method

strives to find the true solution, which takes more iterations. An example clustering

result is given in Figure 5.6.

75

kick1

−5

0

5

kick3

−5

0

5

kick5

−5

0

5

punch1

−6

−4

−2

0

2

punch3

−6

−4

−2

0

2

punch5

−6

−4

−2

0

2

Figure 5.6. Representative examples from clustering of “punching” and “kicking”

sequences. The horizontal axis is time and the vertical axis indexes the joints on the

body.

Table 5.2. Speed comparison of EM1:Hard EM, EM2: Soft EM.

Average Max Iteration Average

Success(%) Success(%) time* (s) convergence

EM1 70 100 7.5 3.2

EM2 73 100 12 2.9

Spectral 76 100 3.1 3.8

*PC: 3.33 GHz dual core CPU, 4 GB RAM, Software: MATLAB

5.2.3. Application: Human Action Recognition from Videos with HMMs

We tested our clustering algorithm on KTH Action Database [1]. This dataset

contains 600 sequences of 25 people collected in four sessions. There are in total 6

actions: Boxing, hand clapping, hand waving, running, jogging and walking. Example

sequences are given in Figure 1.2.

In each action frame we place a bounding box on the human body. Then, this

box is divided into L blocks. We set L = 9 in our experiments. We characterize each

block by the count of the spatio-temporal interest points (STIPs). In other words, for

any given time t, the count of STIPs in each box are the observations xt ∈ ZL. Since it

76

Figure 5.7. Example scenes from KTH Human Action Database [1]. Each row

correspond to an example action sequence. The feature vectors are extracted by

counting the STIPs that fall into different regions on human body.

is a count data, we use a multivariate Poisson observation model. The box and interest

points are automatically extracted by using the off-the-shelf code in [32]. Example

scenes with corresponding STIPs are shown in Figure 5.7. We illustrate the sequence

extraction process in Figure 5.8.

For each class, we use 64 sequences for training and 36 sequences for testing. In

the training step, we trained a separate multiple observation HMM per action class

using EM and spectral learning described in Section 4.2. In the testing step, we assign

a test sequence to the highest likelihood action class. We achieved 70% and 68% test

accuracies with EM and spectral method, respectively. Secondly, we did clustering and

trained more than one HMM for each action class using the Algorithm for learning infi-

nite mixture of HMMs suggested in Section 4.4.1. We also compare our algorithm with

a more conventional Gibbs sampling with auxiliary parameter method as described in

Appendix B. During testing, we did the class assignments according to the likelihoods

averaged over the clusters for each class. Consequently, the performance has increased

by 6% to reach 74%. Confusion matrices are given in Table 5.3. This result indi-

cates that our clustering algorithm based on learning Infinite mixture of HMMs yields

comparable increments in the classification accuracy, which validates our algorithm.

77

Figure 5.8. Feature extraction process for human action videos. Notice that, action

instantiations within a same action class (boxing in this case) tend show variability.

In the first sequence there is no motion in the legs, whereas in the second we have

substantial leg movement. So, it makes sense to learn a mixture of HMMs for each

class in training phase, to better capture the distribution.

5.3. Generative vs. Discriminative Models

We use the sequence data used in [2], to compare the classification accuracy of

the discriminative Markov model and the generative Markov model. The dataset has

6 classes of sequences, with 100 instances for each class. Each sequence is univariate,

continuous and of length 50. We discretize the sequences using 60 levels. Example

sequences are given in Figure 5.9. Confusion matrices obtained with 70 sequences for

each class in training, and 30 sequences for each class in testing are given in Table 5.4.

We see that discriminative Markov model outperforms its generative counterpart.

Seeing this result, one may conclude that discriminative models are superior than

generative models in supervised classification.

However, this is true, only when there is an abundance of training data [33]. In

78

Table 5.3. Confusion matrices obtained from human action video classification. B:

Box, HC: Handclap, HW: Handwave, J: Jog, R: Run, W: Walk. The confusion

matrices obtained for training with EM and Spectral learning are given in the top

row. In the bottom row, we show the confusion matrices corresponding to doing

clustering in training phase.
EM, 70.1 %
B HC HW J R W

B 32 4 1 0 1 0

HC 1 31 6 0 1 0

HW 0 1 29 0 0 0

J 1 0 0 17 20 3

R 0 0 0 7 10 0

W 2 0 0 12 4 33

Spectral, 68.1 %
B HC HW J R W

B 32 7 0 0 2 0

HC 0 20 0 0 1 0

HW 1 9 36 0 0 0

J 0 0 0 7 7 0

R 0 0 0 11 17 1

W 3 0 0 18 10 35

Clustering with Sampling, 74.0 %
B HC HW J R W

B 32 2 1 0 2 0

HC 1 33 2 0 0 0

HW 0 1 34 0 0 0

J 0 0 0 18 19 6

R 0 0 0 4 13 0

W 3 0 0 14 4 30

Clustering with Spectral, 74.1 %
B HC HW J R W

B 32 5 1 0 2 0

HC 1 25 0 0 0 0

HW 0 6 35 0 0 0

J 0 0 0 13 10 1

R 0 0 0 8 20 0

W 3 0 0 15 4 35

Table 5.4. Confusion matrices obtained from classification experiment for generative

and discriminative Markov models. Corresponding classification accuracies are given

on top of the confusion matrices.

Discriminative Markov model, 84.67%
A B C D E F

A 50 0 0 0 4 4

B 0 31 0 0 0 0

C 0 0 48 0 8 0

D 0 16 0 50 0 9

E 0 2 2 0 38 0

F 0 1 0 0 0 37

Generative Markov model, 53.57%
A B C D E F

A 50 0 0 0 0 0

B 0 50 21 18 28 36

C 0 0 29 0 22 0

D 0 0 0 32 0 14

E 0 0 0 0 0 0

F 0 0 0 0 0 0

79

Figure 5.9. Sequence data used in [2]. Classes are, A: Downward trend, B: Cyclic,

C:Normal, D:Upward Shift, E:Upward Trend, F:Downward Shift

Figure 5.10, we compare the classification accuracies of the discriminative and gen-

erative Markov models for varying size training sets. We divide the as 70 sequences

from each class for training and 30 sequences from each class for testing. We keep the

test set’s size as 30 per class for varying training set sizes. We observe that it is only

after we have a substantial amount of training data that discriminative model gain an

advantage.

Intuitively, it makes sense since, if there are not enough variability in the training

set, the discriminative tend to over-fit to this particular data, which is bad for general-

ization. However, generative models assume a certain data distribution, so their fitting

ability is less than their discriminative counterparts as discussed in Appendix A.

80

0 20 40 60 80 100
10

20

30

40

50

60

70

80

90

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 %

% of the training set

Discriminative

Generative

Figure 5.10. Number of data items used in training vs. classification accuracy of

generative and discriminative models.

81

6. CONCLUSIONS

In this thesis, we have studied four generative and two discriminative models for

sequence classification and clustering. The main offering of this thesis is the spectral

learning algorithms for mixture of Markov models and mixture of HMMs. We give the

conclusions and future prospects for each algorithm separately in upcoming sections.

6.1. Spectral learning algorithm for mixture of Markov models

In Section 4.3, we showed that a standard spectral learning algorithm as in [4,15]

for a mixture of Markov models requires an observable moment up to order five. In Sec-

tion 4.3.1, we have proposed a novel scheme for spectral learning of mixture of Markov

models. We propose learning a mixture of Dirichlet distributions, instead of learning a

mixture of Markov models. The experimental results on synthetic data demonstrates

that, spectral learning of mixture Dirichlet distributions yields better clustering ac-

curacies in all sample regimes (meaning the amount of available data items) than

spectral learning of a mixture of Markov models. Our approach also performs better

than learning a mixture Dirichlet distributions with expectation maximization, since

EM may suffer from unlucky initializations, unlike our method which does not require

initialization. We also observe that our approach gives meaningful clustering results on

a complicated dataset of network traffic data. Moreover, in a supervised classification

scenario, we see that doing clustering with our algorithm increases the classification

accuracy more than the expectation maximization approaches. Furthermore, using our

algorithm it is possible to find the number of clusters in a dataset as shown in Section

5.1.3. Overall, the approach is very easy to implement and computationally efficient,

and competitive in terms of clustering accuracy.

As shown in detail in Section 4.3, for models with temporally connected ob-

servations such as mixture of Markov models, high order moments are necessary to

express an eigen-decomposition form which reveals information about the parameters

in terms of observable moments. As future work, we plan on investing the hierarchi-

82

cal Bayesian modeling viewpoint employed in Section 4.3.1, to derive similar spectral

learning algorithms for more complicated time series models such an HMM with tem-

porally connected observations. Also, as a short term object, we plan to derive a similar

algorithm for the continuous analogue of Markov model, the autoregressive model.

Also, we did not provide a proof for the sample complexity bound for our al-

gorithm as in [4]. As a theoretical part of the future work, we will provide a sample

complexity bound for our mixture of Dirichlet distributions algorithm.

6.2. Incorporating spectral learning in learning mixtures of Hidden

Markov models

Learning a mixture of Hidden Markov models requires the usage of a complicated

EM algorithm, which is computationally expensive, as discussed in detail in Section

3.4. Replacing the parameter estimation step with a spectral learning algorithm results

in a fast, simple and well-performing algorithm, given in Section 4.4. The experimental

results show that, the resulting algorithm is faster and more accurate than applying a

more conventional expectation maximization algorithm.

Deriving a standard collapsed Gibbs sampler for an infinite mixture of HMMs,

which finds the number HMM clusters is not possible since it requires an intractable

joint integral-summation over the model parameters and latent state sequence as shown

in Section 4.4.1. However, it is possible to generalize the algorithm in Section 4.4, to

handle infinite mixture of HMMs. We have validated our spectral mixture of HMMs

learning algorithm via doing clustering in training phase of a supervised classification

scenario. Our clustering algorithm results in an improved test accuracy.

Note that, this algorithm can not be considered as a complete spectral learning

algorithm, since we have a k-means type algorithm in the outer loop and we only utilize

the spectral learning as a subroutine. A fully spectral learning algorithm for learning a

mixture of HMMs is hard to achieve since we have an additional permutation ambiguity

caused by the cluster indicator variable hn. For instance, the observation matrix can

not be identified without an arbitrary interchanging of the columns O. Since there

83

are two layers of hidden variables, meaning a cluster indicator hn on top, and then

a latent sequence rn, it is not possible to estimate the parameters with a standard

eigen-decomposition because of the permutation ambiguity.

However, we can avoid the permutation ambiguity by learning a single HMM with

a block-diagonal transition matrix. A block diagonal transition matrix would result

in a reducible latent Markov chain with segregated regimes. Once sequence starts in

a certain regime, it can not get out of it. So, learning a HMM with block-diagonal

transition matrix for N sequences is equivalent to learning a mixture of HMMs. It is

not clear if it is possible to learn a HMM with a block diagonal constraint using the

standard spectral learning algorithms in Section 4.2. However, it is possible to consider

another method of moments based approach based on applying a matrix decomposition

on the empirical moments matrix P2 in Section 4.2. Inspired by the HMM learning

algorithm based on non-negative matrix factorization in [34], we consider the following,

optimization problem:

min
O,A,U

‖P2 −OAdiag(π)OT︸ ︷︷ ︸
U

‖2F

s.t.
∑
i

Oi,j = 1,
∑
k

Ak,l = 1,M. ∗ A = 0, 1TU1 = 1,

O ≥ 0, A ≥ 0, U ≥ 0

where, M is a masking matrix that ensures the block diagonal structure of transition

matrix A, and .∗ is the element-wise product operator. We have considered solving this

problem via coordinate-wise updates. In other words, we fix two variables fromO, A, U ,

and then update one via solving a convex optimization problem. This approach offers a

speed up compared to a traditional EM, since we do not have to do forward-backward

message passing. However, we have observed that the success of the solution is highly

dependent on the initialization. We are planning on investigating this problem further

by applying more clever optimization techniques other than coordinate-wise updates.

84

6.3. Discussion on Spectral Learning and EM

Spectral learning algorithms are very exciting, first of all because of their sim-

plicity. Implementing an EM algorithm for a HMM is not easy. The code is lengthy

and there are a lot of potential sources for numeric instabilities. However, as the pseu-

docode in Figure 4.2.1 suggests, an alternative spectral learning algorithm is very easy

to understand and implement.

The simplicity also offers speed. A spectral learning for learning an HMM simply

amounts to accumulating some empirical moments, and then computing a low rank

SVD and some eigen-decompositions. Also, the algorithm does not require any sort of

initialization or iterations as EM does.

In spite of the elegance and simplicity of the algorithm, there are some drawbacks

in the works [4,15,16] which may prevent the widespread usage of the algorithm. First

of all, the constraint K ≤ L can be prohibitive in some applications. However, there is

some very recent theoretical work [35] which shows that it is possible to derive tensor

decompositions that does not require this constraint.

The other aspect which may prevent the spectral learning algorithms from getting

in machine learning textbooks is the lack of generality. EM offers a very general

framework for learning in almost all class of latent variable models. Although there are

spectral learning papers for inference in general latent trees [36] and latent junction

trees [17], these works do not consider learning (parameter estimation). As shown in

the Section 4.3 and [16], for each different class of latent variables, we have to derive

a spectral learning algorithm almost from scratch, meaning there is a lack of general

framework which tells us how to relate the empirical moments to the model parameters.

It is also almost certain that spectral learning algorithms require more data than

EM for stable parameter estimates. As shown in Figure 5.1, we see that the perfor-

mance of the spectral learning algorithms is proportional to the amount of available

data.

85

APPENDIX A: Generative Models and Discriminative Models

Generative models and discriminative models are the two principal classes of

models used in machine learning. The essence of the difference of these two model

classes lies in their objective function. In a supervised learning scenario given the data

x1:N and labels h1:N , to learn the model parameters θ, we train the generative models

via solving the following optimization problem:

θ∗ = arg max
θ

∏
n

p(xn| θ, hn) (A.1)

This expression maximizes the likelihood p(x1:N |θ, h1:N) of the data points x1:N and

class labels h1:N , given the model parameters θ. Note that we separately train a model

for each class. Thus, primarily we aim to maximize the ability of the model to fit the

data, and separability of the classes is not directly addressed.

The discriminative models differ fundamentally from their generative counter-

parts by taking into account the class separability in training. In training discrimina-

tive models, we directly maximize the posterior of the class labels in order to learn the

model parameters:

θ∗ = arg max
θ

∏
n

p(hn|xn, θ) = arg max
θ

∏
n

p(xn, hn| θ)∑
hn
p(xn, hn|θ)

(A.2)

The canonical examples for generative and discriminative models, respectively

are the Naive Bayes model and logistic regression model. Suppose we want to do

supervised classification on a dataset of N two dimensional datapoints. Let the true

class conditional densities be:

p(xn| θ, hn = 1) =N (xn;µ1,Σ1)

p(xn| θ, hn = 2) =N (xn;µ2,Σ2)

86

Let us first consider classification with Naive Bayes classifier, which is a genera-

tive model. Using a generative approach would require a modeling assumption for

p(xn|θ, hn). Given that these are the underlying true class conditional distributions,

the best possible classifier would use these class conditionals for classification. How-

ever, in real life we do not know the true distribution of the data. Suppose for this

toy problem we assume unit variance spherical Gaussians N (xn|µk, σ2I) for class con-

ditionals. In training, we fit the class conditional densities, which in this case amounts

to simply computing the mean of the data items, for estimating µ1 and µ2. In test,

when a new data item xn comes in, we classify according to the ratio;

log
p(xtest| θ, hn = 1)

p(xtest| θ, hn = 2)
= xT (µ2 − µ1)/2σ

2 − µT1 µ1/2σ
2 + µT2 µ2/2σ

2 (A.3)

If this ratio is greater than 0, the test data item xtest is assigned to the first class,

otherwise to the second class. Next, to derive a discriminative classifier, let us consider

the posterior of the class label hn (assuming uniform prior p(hn)):

p(hn = 1|xn, θ) =
p(xn|hn = 1, θ)

p(xn|hn = 1, θ) + p(xn|hn = 2, θ)

=
1

1 + exp(log(p(xn|hn=2,θ)
p(xn|hn=1,θ)

))

=
1

1 + exp(xT (µ2 − µ1)/2σ
2︸ ︷︷ ︸

θ′

+µT2 µ2/2σ
2 − µT1 µ1/2σ

2︸ ︷︷ ︸
θ′0

))

=
1

1 + exp(xT θ′ + θ′0))
(A.4)

where, the expression in Equation A.4 is known as the logistic function σ(xT θ′ + θ′0))

(and hence the name logistic regression). Notice that, altough we have assumed that the

class conditional densities p(xn|hn = 1, θ) are isotropic Gaussians with equal variances,

at the end, we have a generic linear discriminant as the argument of the logistic function.

We see that, in logistic regression, the choice of the model is equivalent to choosing

the type of discriminant function. For instance, having arbitrary covariance matrix

Gaussians as class conditionals would result in a quadratic discriminant function. To,

better appreciate the difference between generative and discriminative models, let us

87

consider Figure A.1.

−12 −10 −8 −6 −4 −2 0 2 4

−4

−2

0

2

4

6

8

Logistic Reg.

Naive Bayes

Figure A.1. Logistic Regression vs. Naive Bayes Classifiers. The decision boundary

are respectively shown with green and red lines.

When we learn the parameters θ′ of the discriminant function, the main objective

of the optimization problem is to maximize the class separation as seen from Equa-

tion A.2, and as illustrated in Figure A.1: Logistic regression is able to classify more

data points correctly than naive Bayes classifier. Naive Bayes classifier fails to find a

decision boundary as good as its discriminative counterpart logistic regression which

takes into account the tail of the red data points distribution, because of the model

mis-specification caused by the isotropic variance assumption. Although it is simple

to fit two dimensional arbitrary covariance matrix Gaussians, in more sophisticated

real life models, there is almost always a model mis-specification associated with using

generative classification.

When labelled training data is plentiful, generative models give great general-

ization performances [7, 33] (meaning they perform good on test data). However, in

practice we may encounter unlabeled data. Discriminative models can not handle

unlabeled data, so we have to use generative models, in this type of datasets.

88

Even though the Naive Bayes and Logistic Regression Models we have considered

in this section are not sequential models, we have used them for their simplicity to

demonstrate the concepts of the generative and discriminative models. According to

the terminology in [33], logistic regression and naive Bayes models form a generative-

discriminative pair. Following the generative-discriminative pair convention, in the the-

sis, we introduce Markov model-discriminative Markov model and HMM-discriminative

HMM (which is in fact a linear chain hidden conditional random field (HCRF) [21]).

89

APPENDIX B: Gibbs Sampling for an Infinite mixture of

HMMs using auxiliary parameter method

As discussed in Section 4.4.1, to derive a sampler for an infinite mixture model, we

have to take an integral over the model parameters θ. In [37], there is an alternative

algorithm called Gibbs sampling with auxiliary parameters. We consider a mixture

model with H clusters, although there are only K occupied clusters. According to

this method, a sampling iteration is as follows (We continue the notation convention

in Section 4.4.1):

• For occupied K clusters;

We sample the parameters of cluster k, θk ∼ p(θk| {xl : l, rl = k}), from the

posterior of the parameters of cluster k.

• For unoccupied H −K clusters;

We sample the parameters of cluster k, θ ∼ p(θk), from the prior of the model

parameters

• Then, we sample h1:N , according to,

(i) For occupied K clusters;

p(hn = k| h−n1:N ,x1:N , θ1:K) ∝ N−nk
N − 1 + α

p(xn| θk) (B.1)

(ii) For unoccupied H −K clusters;

p(hn = k| h−n1:N ,x1:N , θ1:K) ∝ α/(H −K)

N − 1 + α
p(xn| θk) (B.2)

(iii) If k > K, we set K = K + 1.

It is claimed in the paper that as H →∞, this algorithm converges to a collapsed

Gibbs sampler for an infinite mixture model. So, H should be chosen large, which is

the reason why this algorithm is considered slow. In order to apply this algorithm for

90

a HMM, we have to first know how sample from the HMM parameters θ = (O,A, rn).

In the next section, we derive a Gibbs sampler for a HMM.

B.1. Gibbs Sampling in HMM

The full Bayesian model is as follows:

rt|rt−1 ∼ Discrete(Art−1) (B.3)

Am ∼ Dirichlet(α, . . . , α) (B.4)

Om ∼ H (B.5)

xt|rt ∼ p(xt|Ort) (B.6)

The variables are defined as follows:

• rt ∈ {1, . . . ,M} is the state indicator variable at discrete time t.

• Am = A(:,m) is the state transition density from state m. (Alternatively, it can

be considered as the m’th column of the state transition matrix)

• p(xt|O) is the observation density

• Om = O(:,m) is the parameter set used in the observation density at state m.

• H is the prior density on the observation matrix O.

Note that in this model definition we did not include the first state distribution for the

sake of simplicity. Next, we have to derive the full conditionals. In order to do this, we

write the full-joint distribution and consider functional dependencies on each variable

to be sampled.

p(x1:T , r1:T , O,A) =
T∏
t=1

p(xt|rt, O)
T∏
t=1

p(rt|rt−1, A)
M∏
m=1

p(Am)
M∏
m=1

p(Om)

∝
T∏
t=1

M∏
j=1

p(xt|Oj)
[rt=j]

T∏
t=1

M∏
m=1

M∏
j=1

A
[rt−1=m,rt=j]
mj

M∏
m=1

M∏
j=1

Aα−1mj

M∏
m=1

p(Om) (B.7)

91

[a = b] is the indicator notation and returns 1 if a = b, 0 if a 6= b. Then the full

conditionals are derived as follows:

p(Am|others) ∝
M∏
j=1

A
nmj

m,j

M∏
j=1

Aα−1m,j

∝
M∏
j=1

A
nmj+α−1
m,j ∝ Dirichlet(nm,1 + α, . . . , nm,M + α) (B.8)

p(Oj|others) ∝
T∏
t=1

p(xt|Oj)
[rt=j]p(Oj) =

∏
t:rt=j

p(xt|Oj)p(Oj) (B.9)

p(rt|others) ∝
M∏
j=1

p(xt|Oj)
[rt=j]

M∏
j=1

A
[rt=j]
rt−1,j

M∏
j=1

A
[rt=j]
j,rt+1

(B.10)

∝
M∏
j=1

(p(xt|Oj)Art−1,jAj,rt+1)
[rt=j], for 1 ≤ t ≤ T − 1 (B.11)

∝
M∏
j=1

(p(xt|Oj)Art−1,j)
[rt=j], for t = T (B.12)

Here nm,j denotes the number transitions from state m to state j. Note that this is

the most straightforward Gibbs sampling scheme. In the sequel, we will sample the

indicator sequence r1:T in blocks. That is, we will sample trajectories. The reason

behind this is as follows; the basic Gibbs sampler which samples from each of the

variables independently tends to get stuck in a particular region. Consider the following

scenario: Suppose rt−1 = 1, rt+1 = 1, π1,j = 0.99, πk,1 = 0.99, then it is very unlikely

that rt 6= 1, even though it is still possible. Therefore, if sample from the trajectories,

instead of the individual variables, we may better explore the search space. Generally,

the Gibbs sampling performs badly if there is a correlation between the variables.

The way to sample from the trajectories r1:T is as follows. Consider the posterior

distribution over sequences:

p(r1:T |x1:T) = p(rT |x1:T)p(rT−1|rT , x1:T−1) . . . p(rt−1|rt, x1:t−1) . . . p(r1|r2, x1) (B.13)

Note that,
p(rt−1|rt, x1:t−1) ∝ p(rt−1, x1:t−1)p(rt|rt−1)

∝ α(rt−1)Art−1,rt (B.14)

92

where,

p(rT , x1:T) ∝ α(rT) (B.15)

α(rt) is the forward message defined in Section 3.2.1, in Equation 3.15. We first com-

pute the all of the forward messages. And then, we first sample last indicator variable

rT from p(rT , x1:T) . Then conditioned on it, we sample rT−1 from p(rT−1|rT , x1:T−1).

We go on like this until the first indicator variable.

93

APPENDIX C: EM algorithm for learning mixture of

Dirichlet distributions

As discussed in detail in Section 3.1, in order to derive an EM algorithm for

a latent variable model, we first write the EM lower bound (We use the notation in

Section 4.3.1):

Q(θ, θ∗) =+Ep(r1:N |s1:N ,α∗)[log p(s1:N , r1:N |α)]

= Ep(r1:N |x1:N ,α∗)[log
N∏
n=1

p(sn|rn, α)p(rn)]

=
N∑
n=1

K∑
k=1

E([rn = k]) logDirichlet(α(:, k)) +
N∑
n=1

K∑
k=1

E([rn = k]) log p(hn = k) (C.1)

Omitting the second term (mixing proportions p(hn)) for the sake of simplicity, we are

left with the first term to maximize. We compute the gradient of it, with respect to

α(l, k):

∂Q(θ, θ∗)

∂α(l, k)
=

N∑
n=1

E([rn = k])
(
ψ(

L∑
l′=1

α(l′, k))− ψ(α(l, k)) + log sl,n

)
(C.2)

where, ψ(.) is the Digamma function. Note that there is no closed form update equation

for α(:, k). We have to find the roots of this equations via some numerical method.

One additional thing to note is that, in order to ensure that α > 0, we can use an

interior point method. To do this, we introduce an additional term to be maximized

so that we maximize the function Q(θ, θ∗) +
∑

l log(α(l, k)): If the alpha gets closer to

0, the log(.) function goes to infinity. So, we penalize the values that comes near zero.

Overall, we have the following gradient descent update:

α(l, k)new = α(l, k) + ζ
(∂Q(θ, θ∗)

∂α(l, k)
+

1

α(l, k)

)
(C.3)

where, ζ is the learning rate.

94

REFERENCES

1. Ning, H., Y. Hu and T. S. Huang, “Searching Human Behaviours Using Spatial-

Temporal Words”, International Conference on Image Processing , 2004.

2. Pham, D. T. and A. B. Chain, “Control Chart Pattern Recognition Using a New

Type of Self Organizing Neural Network”, In Proceedings of The Institution of

Mechanical Engineers Part I-Journal of Systems and Control Engineering , Vol.

212, No. 2, pp. 115–127, 1998.

3. Subakan, Y. C., B. Kurt, A. T. Cemgil and B. Sankur, “Spectral Learning for

Mixture of Markov Models”, Neural Information Processing Systems , 2013, (Sub-

mitted).

4. Anandkumar, A., D. Hsu and S. Kakade, “A Method of Moments for Mixture

Models and Hidden Markov Models”, Conference on Learning Theory , 2012.

5. Subakan, Y. C., O. Celiktutan, A. T. Cemgil and B. Sankur, “Spectral Learning

of Mixtures of Hidden Markov Models”, 21’st IEEE Signal Processing Applications

Conference (SIU), 2013.

6. Subakan, Y. C., O. Celiktutan, A. T. Cemgil and B. Sankur, “Spectral Learning of

Infinite Mixtures of Hidden Markov Models for Human Action Recognition”, Neu-

ral Information Processing Systems, Spectral Learning for Latent Variable Models

Workshop, 2012.

7. Bishop, C. M. and J. Lasserre, “Generative or Discriminative? Getting the Best of

Both Worlds”, Bayesian Statistics , Vol. 8, pp. 3–24, 2007.

8. Xing, Z., J. Pei and E. Keogh, “A Brief Survey on Sequence Classification”,

SIGKDD Explorations Newsletter , Vol. 12, No. 1, pp. 40–48, 2010.

95

9. Leslie, C. S., E. Eskin and W. S. Noble, “The Spectrum Kernel: A String Kernel

for SVM Protein Classification”, Pacific Symposium on Biocomputing , 2002.

10. Chuzhanova, N. A., A. J. Jones and S. Margetts, “Feature Selection for Genetic

Sequence Classification”, Bioinformatics , Vol. 12, No. 1, pp. 139–143, 1998.

11. Lesh, N., M. J. Zaki and M. Ogihara, “Mining Features for Sequence Classification”,

In Proceedings of the 5th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining , KDD ’99, pp. 342–346, ACM, New York, NY, USA,

1999.

12. Wei, L. and E. Keogh, “Semi-Supervised Time Series Classification”, In Proceedings

of the 12th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining , pp. 748–753, 2006.

13. Keogh, E. J. and M. J. Pazzani., “Scaling Up Dynamic Time Warping for Data

Mining Applications”, In Proceedings of the 6th ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining , pp. 285–289, 2000.

14. Bishop, C. M., Pattern Recognition and Machine Learning , Springer, 2006.

15. Hsu, D., S. M. Kakade and T. Zhang, “A Spectral Algorithm for Learning Hidden

Markov Models”, Journal of Computer and System Sciences , Vol. 78, No. 5, pp.

1460–1480, 2012.

16. Anandkumar, A., R. Ge, D. Hsu, S. Kakade and M. Telgarsky, “Tensor De-

compositions for Learning Latent Variable Models”, arXiv:1210.7559v2 , 2012,

http://arxiv.org/abs/1210.7559v2, accessed at June 2013.

17. Parikh, A. P., L. Song, M. Ishteva, G. Teodoru and E. P. Xing, “A Spectral Algo-

rithm for Latent Junction Trees”, The 28th Conference on Uncertainty in Artificial

Intelligence (UAI), 2012.

18. Rasmussen, C. E., “The Infinite Gaussian Mixture Model”, Neural Information

96

Processing Systems , pp. 554–560, MIT Press, 2000.

19. Kulis, B. and M. I. Jordan, “Revisiting K-means: New Algorithms via Bayesian

Nonparametrics”, arXiv:1210.7559v2 , 2011, http://arxiv.org/abs/1111.0352,

accessed at June 2013.

20. Sutton, C. and A. McCallum, “An Introduction to Conditional Random Fields”,

arXiv:1011.4088 , 2010, http://arxiv.org/abs/1011.4088, accessed at June

2013.

21. Quattoni, A., S. Wang, L. Morency, M. Collins and T. Darrell, “Hidden Conditional

Random Fields”, Pattern Analysis and Machine Intelligence, IEEE Transactions

on, Vol. 29, No. 10, pp. 1848–1852, 2007.

22. Dempster, A. P., N. M. Laird and D. B. Rubin, “Maximum Likelihood from Incom-

plete Data via the EM Algorithm”, Journal of the Royal Statistical Society, Series

B , Vol. 39, No. 1, pp. 1–38, 1977.

23. Pearson, K., “Method of Moments and Method of Maximum Likelihood”,

Biometrika, Vol. 28, No. 1/2, pp. 34–59, 1936.

24. Anandkumar, A., D. P. Foster, D. Hsu, S. Kakade and Y. Liu, “Two SVDs Suffice:

Spectral Decompositions for Probabilistic Topic Modeling and Latent Dirichlet

Allocation”, Neural Information Processing Systems , 2012.

25. Anandkumar, A., R. Ge, D. Hsu and S. M. Kakade, “A Tensor Spectral Approach

to Learning Mixed Membership Community Models”, Conference on Learning The-

ory , 2013.

26. Nial, F. and W. Jason, “Estimating the Evidence - A Review”, Statistica Neer-

landica, Vol. 66, No. 3, pp. 288–308, 2012.

27. Ipoque, “Ipoque PACE: Protocol and Application Classification Engine”,

http://www.ipoque.com/en/products/protocol-and-application-

97

classification-engine, accessed at June 2013.

28. Nguyen, T. and G. Armitage, “A Survey of Techniques for Internet Traffic Classi-

fication Using Machine Learning”, IEEE Communications Surveys and Tutorials ,

Vol. 10, No. 4, pp. 56–76, 2008.

29. Carnegie Mellon University, “CMU Motion Capture Database”,

http://mocap.cs.cmu.edu/, accessed at June 2013.

30. Jebara, T., Y. Song and K. Thadani, “Spectral Clustering and Embedding with

Hidden Markov Models”, In Proceedings of the 18th European Conference on Ma-

chine Learning , ECML ’07, pp. 164–175, Springer-Verlag, Berlin, Heidelberg, 2007.

31. Müller, M., T. Röder, M. Clausen, B. Eberhardt, B. Krüger and A. Weber, Doc-

umentation Mocap Database HDM05 , Tech. Rep. CG-2007-2, Universität Bonn,

June 2007.

32. Bregonzio, M., S. Gong and T. Xiang, “Recognising Action as Clouds of Space-

Time Interest Points”, Computer Vision and Pattern Recognition, pp. 1948–1955,

IEEE, 2009.

33. Ng, A. Y. and M. I. Jordan, “On Discriminative vs. Generative Classifiers: A Com-

parison of Logistic Regression and Naive Bayes”, Neural Information Processing

Systems , 2001.

34. Lakshminarayanan, B. and R. Raich, “Non-Negative Matrix Factorization for Pa-

rameter Estimation in Hidden Markov Models”, Machine Learning for Signal Pro-

cessing (MLSP), IEEE International Workshop on, pp. 89–94, 2010.

35. Bhaskara, A., M. Charikar and A. Vijayaraghavan, “Uniqueness of Tensor Decom-

positions with Applications to Polynomial Identifiability”, arXiv: 1304.8087 , 2013,

http://arxiv.org/abs/1304.8087, accessed at June 2013.

36. Parikh, A. P., L. Song and E. P. Xing, “A Spectral Algorithm for Latent Tree

98

Graphical Models”, In Proceedings of the 28th International Conference on Machine

Learning , 2011.

37. Neal, R. M., “Markov Chain Sampling Methods for Dirichlet Process Mixture Mod-

els”, Journal of Computational and Graphical Statistics , Vol. 9, No. 2, pp. 249–265,

2000.

