Spectral Learning of Hidden Markov Models with Group Persistence,
Appendix

1. Proofs:

Lemma 3: K eigenvalues of an SHMM global transition
matrix are same as the eigenvalues of its corresponding
regime transition matrix B.

Proof: Let us consider the product AT (b ® 13;), where ®
denotes the Kronecker product, and b € RM is an eigen-
vector of BT. Let \, denote the corresponding eigenvalue.

AT(b@ 1) = EkBk,lbkA;nglM = | Aobily

=X (b® 1y).

Note that each block A; ; is stochastic matrix with column
sums equal to 1, so every AZ ; has an eigenvector equal to
with eigenvalue one. And, since A and AT (and B, BT)
have the same eigenvalues, we conclude that )\ is an eigen-

vector of A. This argument applies to all eigenvectors b of
BT. ]

Theorem 2:
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where, ¢ = [O7[2 1] e = ST lllE (0T +
IOTN1S12lllE I es = [OT[[[S1.2MlI[(OT)T]. and ¢4 =
r(A)k(A) and, T is the number data items used for §1\2

We denote diag(1/¢) and diag(1 /fA) respectively by, &1
and £~ ! to save space.

Proof: We know from (Bhatia et al., 1997) that for two
diagonalizable matrices A = VAV ' and A = VAV !,
IP(A) = Al < \/K(A)s(A) [A = Ap. (1)

So, proving the bound amounts to upper bounding the de-
viation in the estimation ||A — Al||r. We use the estimator

given in Equation 5(in the paper, pseudo inverse estimator)
for the sake of analysis.
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where the inequalities are due to triangular inequality. The
next step is to bound the individual terms:
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where we omitted the subscript F' to save space, used the
property |AB||r < ||A||r||B]|F of the Frobenius norm,
and the second inequality is from (Hsu et al., 2009). The
three remaining terms are also handled using the same
property of the Frobenius norm,
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By arranging terms we see that ¢; = [|Of|?||¢7Y] ,
c2 = |Se2llllE~ IO + 0T IIS12llllE . es =

[OH[I1S12/[[[(OT)H[l, and 5 = 1/ K(A)r(A). O

2. Additional Experiment

We do the depermutation experiment in Section 4.1 also for
the HMM-M model. We could not include this result in the
manuscript due to space limitations. It is given in Figure 1
of the appendix.
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Figure 1. Depermuting estimated transition matrices on synthetic data, (First row) True Transition Matrices, (Second Row) Low Rank
Reconstruction Ay, (Third Row) P(A) before refinement, (Fourth Row) P(A) after refinement, (Fifth Row) The error } -, . [|P(A:.;) —
Bp,(i,jyP1(Ap,(i,j) ) || F, before and after refinement.



