Spectral Learning of Hidden Markov Models with Group Persistence, Appendix

1. Proofs:

Lemma 3: K eigenvalues of an SHMM global transition matrix are same as the eigenvalues of its corresponding regime transition matrix B.

Proof: Let us consider the product $A^{\top}(b \otimes 1_M)$, where \otimes denotes the Kronecker product, and $b \in \mathbb{R}^M$ is an eigenvector of B^{\top} . Let λ_b denote the corresponding eigenvalue.

$$A^{\top}(b \otimes 1_M) = \begin{bmatrix} \vdots \\ \sum_k B_{k,1} b_k A_{k,1}^{\top} 1_M \\ \vdots \end{bmatrix} = \begin{bmatrix} \vdots \\ \lambda_b b_k 1_M \\ \vdots \end{bmatrix}$$
$$= \lambda_b (b \otimes 1_M).$$

Note that each block $A_{i,j}$ is stochastic matrix with column sums equal to 1, so every $A_{i,j}^{\top}$ has an eigenvector equal to with eigenvalue one. And, since A and A^{\top} (and B, B^{\top}) have the same eigenvalues, we conclude that λ_b is an eigenvector of A. This argument applies to all eigenvectors b of B^{\top} .

Theorem 2:

$$\|\mathcal{P}(\Lambda) - \widehat{\Lambda}\|_F \le c_3 \left(c_1 \frac{1 + \log(1/\delta)}{\sqrt{T}} + c_2 \|O^{\dagger} - \widehat{O}^{\dagger}\|_F + c_3 \|\xi^{-1} - \widehat{\xi}^{-1}\|_F \right), \text{ with probability } 1 - \delta.$$

where, $c_1 = \|O^\dagger\|^2 \|\xi^{-1}\|$, $c_2 = \|\widehat{S_{1,2}}\| \|\xi^{-1}\| \|(O^\top)^\dagger\| + \|\widehat{O}^\dagger\| \|\widehat{S_{1,2}}\| \|\widehat{\xi}^{-1}\|$, $c_3 = \|\widehat{O}^\dagger\| \|\widehat{S_{1,2}}\| \|(O^\top)^\dagger\|$, and $c_4 = \sqrt{\kappa(A)\kappa(\widehat{A})}$ and, T is the number data items used for $\widehat{S_{1,2}}$. We denote $\mathrm{diag}(1/\xi)$ and $\mathrm{diag}(1/\widehat{\xi})$ respectively by, ξ^{-1} and $\widehat{\xi}^{-1}$ to save space.

Proof: We know from (Bhatia et al., 1997) that for two diagonalizable matrices $A = V\Lambda V^{-1}$ and $\widehat{A} = \widehat{V}\widehat{\Lambda}\widehat{V}^{-1}$,

$$\|\mathcal{P}(\Lambda) - \widehat{\Lambda}\|_F \le \sqrt{\kappa(A)\kappa(\widehat{A})} \|A - \widehat{A}\|_F.$$
 (1)

So, proving the bound amounts to upper bounding the deviation in the estimation $||A - \widehat{A}||_F$. We use the estimator

given in Equation 5(in the paper, pseudo inverse estimator) for the sake of analysis.

$$\begin{split} &\|A - \widehat{A}\|_{F} \\ &= \|O^{\dagger}S_{1,2}\xi^{-1}(O^{\top})^{\dagger} - \widehat{O}^{\dagger}\widehat{S_{1,2}}\widehat{\xi}^{-1}(\widehat{O}^{\top})^{\dagger}\|_{F} \\ &\leq \|O^{\dagger}S_{1,2}\xi^{-1}(O^{\top})^{\dagger} - O^{\dagger}\widehat{S_{1,2}}\xi^{-1}(O^{\top})^{\dagger}\|_{F} \\ &+ \|O^{\dagger}\widehat{S_{1,2}}\xi^{-1}(O^{\top})^{\dagger} - \widehat{O}^{\dagger}\widehat{S_{1,2}}\widehat{\xi}^{-1}(\widehat{O}^{\top})^{\dagger}\|_{F} \\ &+ \|O^{\dagger}\widehat{S_{1,2}}\xi^{-1}(O^{\top})^{\dagger} - \widehat{O}^{\dagger}\widehat{S_{1,2}}\widehat{\xi}^{-1}(\widehat{O}^{\top})^{\dagger}\|_{F} \\ &\leq \|O^{\dagger}S_{1,2}\xi^{-1}(O^{\top})^{\dagger} - \widehat{O}^{\dagger}\widehat{S_{1,2}}\xi^{-1}(O^{\top})^{\dagger}\|_{F} \\ &+ \|\widehat{O}^{\dagger}\widehat{S_{1,2}}\xi^{-1}(O^{\top})^{\dagger} - \widehat{O}^{\dagger}\widehat{S_{1,2}}\widehat{\xi}^{-1}(\widehat{O}^{\top})^{\dagger}\|_{F} \\ &+ \|\widehat{O}^{\dagger}\widehat{S_{1,2}}\xi^{-1}(O^{\top})^{\dagger} - \widehat{O}^{\dagger}\widehat{S_{1,2}}\widehat{\xi}^{-1}(\widehat{O}^{\top})^{\dagger}\|_{F} \\ &+ \|\widehat{O}^{\dagger}\widehat{S_{1,2}}\xi^{-1}(O^{\top})^{\dagger} - \widehat{O}^{\dagger}\widehat{S_{1,2}}\widehat{\xi}^{-1}(\widehat{O}^{\top})^{\dagger}\|_{F} \\ &+ \|\widehat{O}^{\dagger}\widehat{S_{1,2}}\widehat{\xi}^{-1}(\widehat{O}^{\top})^{\dagger} - \widehat{O}^{\dagger}\widehat{S_{1,2}}\widehat{\xi}^{-1}(\widehat{O}^{\top})^{\dagger}\|_{F} \\ &+ \|\widehat{O}^{\dagger}\widehat{S_{1,2}}\widehat{\xi}^{-1}(\widehat{O}^{\top})^{\dagger}\widehat{S_{1,2}}\widehat{\xi}^{-1}(\widehat{O}^{\top})^{\dagger}\|_{F} \\ &+ \|\widehat{O}^{\dagger}\widehat{S_{1,2}}\widehat{\xi}^{-1}(\widehat{O}^{\top})^{\dagger}\widehat{S_{1,2}}\widehat{\xi}^{-1}(\widehat{O}^{\top})^{\dagger}\widehat{S_{1,2}}\widehat{\xi}^{-1}(\widehat{O}^{\top})^{\dagger}\widehat{S_{1,2}}\widehat{\xi}^{-1}(\widehat{O}^{\top})^{\dagger}\widehat{S_{1,2}}\widehat{\xi}^{-1}(\widehat{O}^{\top})^{\dagger}\widehat{S_{1,2}}\widehat{\xi}^{-1}(\widehat{O}^{\top})^{\dagger}\widehat{S_{1,2}}\widehat{\xi}^{-1}(\widehat{O}^{\top})^{\dagger}\widehat{S_{1,2}}\widehat{\xi}^{-1}(\widehat{O}^{\top})^{\dagger}\widehat{S$$

where the inequalities are due to triangular inequality. The next step is to bound the individual terms:

$$\begin{split} \|O^{\dagger}(S_{1,2} - \widehat{S_{1,2}}) \xi^{-1}(O^{\top})^{\dagger} \| & \qquad (3) \\ & \leq \|O^{\dagger}\| \|S_{1,2} - \widehat{S_{1,2}}\| \|\xi^{-1}\| \|(O^{\top})^{\dagger}\| \\ & \leq \|O^{\dagger}\|^{2} \|\xi^{-1}\| \frac{1 + \log(1/\delta)}{\sqrt{T}}, \text{ with probability } 1 - \delta, \end{split}$$

where we omitted the subscript F to save space, used the property $\|AB\|_F \leq \|A\|_F \|B\|_F$ of the Frobenius norm, and the second inequality is from (Hsu et al., 2009). The three remaining terms are also handled using the same property of the Frobenius norm,

$$\begin{split} \|(O^{\dagger} - \widehat{O}^{\dagger})\widehat{S_{1,2}}\xi^{-1}(O^{\top})^{\dagger}\| & \leq \|(O^{\dagger} - \widehat{O}^{\dagger})\| \|\widehat{S_{1,2}}\| \|\xi^{-1}\| \|(O^{\top})^{\dagger}\|, \end{split}$$

Spectral Learning of Hidden Markov Models with Group Persistence, Supplemental Materials

Spectral Learning of Flidden Warkov Wood	leis with Group Fersistence, Supplemental Waterials
$\ \widehat{O}^{\dagger}\widehat{S_{1,2}}(\xi^{-1} - \widehat{\xi}^{-1})(O^{\top})^{\dagger}\ _{F}$	
1	(5)
2	9)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\int_{5}^{1} \ O^{*}S_{1,2}\zeta^{*}(O^{*})^{*} - (O^{*})^{*}\ $	(6)
$\leq \ \widehat{O}^{\dagger}\ \ \widehat{S_{1,2}}\ \ \widehat{\xi}^{-1}\ \ O^{\dagger} - \widehat{O}^{\dagger}\ .$	
D	
By arranging terms we see that $c_1 = \ O^{\dagger}\ ^2 \ \xi^{-1}\ $ $c_2 = \ \widehat{S_{1,2}}\ \ \xi^{-1}\ \ (O^{\top})^{\dagger}\ + \ \widehat{O}^{\dagger}\ \ \widehat{S_{1,2}}\ \ \widehat{\xi}^{-1}\ , c_3$	
^.	
$ O^{+} S_{1,2} (O^{+})^{+} $, and $c_4 = \sqrt{\kappa(A)\kappa(A)}$.	
2. Additional Experiment	
We do the depermutation experiment in Section 4.1 also f	or
the HMM-M model. We could not include this result in the	
manuscript due to space minitations. It is given in rigure	21
of the appendix.	
References	
Bhatia, Rajendra, Kittaneh, Fuad, and Li, Ren Cang. Son inequalities for commutators and an application to spe	
inequalities for commutations and an application to spe	vC-
tral variation. Linear and Multilinear Algebra, 1997.	
Hsu, Daniel, Kakade, Sham M., and Zhang, Tong.	
spectral algorithm for learning hidden markov mode	
Journal of Computer and System Sciences, (1460-1480 2009.	J),
2007.	

Figure 1. Depermuting estimated transition matrices on synthetic data, (First row) True Transition Matrices, (Second Row) Low Rank Reconstruction \widehat{A}_r , (Third Row) $\widetilde{\mathcal{P}}(A)$ before refinement, (Fourth Row) $\widetilde{\mathcal{P}}(A)$ after refinement, (Fifth Row) The error $\sum_{i,j} \|\widetilde{\mathcal{P}}(\widehat{A}_{i.j}) - B_{\mathcal{P}_2(i,j)}\mathcal{P}_1(A_{\mathcal{P}_2(i,j)})\|_F$, before and after refinement.