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Abstract

Problem statement: Sequence clustering by spectral
learning for Mixture of Markov models.

Contribution: Regular spectral learning algorithms for la-
tent variable models require fifth order moment. We reduce
the sample complexity by learning mixture of Dirichlet dis-
tributions.

Conclusion: We experimentally show the superiority of our
approach compared to EM and regular spectral learning.

1. Mixture of Markov Models

The graphical model is as follows:

•Observation at sequence n, time t: xt,n.
•Cluster indicator of sequence n: hn.
• Transition matrix of cluster k: Ak.

The likelihood of observing a sequence,
xn = (x1,n, x2,n, . . . , xTn,n) of length Tn is defined as:

p(xn|A1:K) =

K∑
k=1

p(hn = k)

Tn∏
t=1

p(xt,n|xt−1,n, hn = k)

=

K∑
k=1

πk

Tn∏
t=1

L∏
l1=1

L∏
l2=1

A
[xt,n=l1][xt−1,n=l2]
k,l1,l2

• The ultimate learning goal is to estimate the cluster as-
signments h1:N given sequences x1:N .

2. Spectral Learning of Mixture of Markov Models

Learning Strategy: Learn transition matrices A1:K given
sequences x1:N . Then, learn the assignments h1:N .

Claim: The model parameters A1:K can be uniquely identi-
fied using fifth and fourth order moments:

Bi,j,k :=p(x5, x4 = i, x3, x2 = j, x1 = k)p(x′5, x4 = i, x3, x2 = j)−1

=A(:, i, :)diag(A(j, k, :))A−1(:, i, :)

Drawback: This spectral learning approach requires mo-
ments up-to order five.

3. Spectral Learning of Mixture of Dirichlet
Distributions

Learning Strategy: Alternatively, one can learn a mixture
of posterior distributions of transition matrices, which is mix-
ture of Dirichlet distributions, to estimate h1:N .

Using conjugate Dirichlet prior, the posterior is also Dirich-
let:

p(Ahn|xn, hn) ∝ p(xn|Ahn, hn)p(Ahn)

∝

 Tn∏
t=1

L∏
l1=1

L∏
l2=1

A
[xt,n=l1][xt−1,n=l2]
hn,l1,l2

 L∏
l1=1

L∏
l2=1

A
β−1
hn,l1,l2

∝
L∏
l1=1

L∏
l2=1

A
cnl1,l2+β−1
hn,l1,l2

= Dirichlet(cn1,1 + β − 1, cn1,2 + β − 1, . . . , cnL,L + β − 1)

where, cnl1,l2 stores the state transition counts of xn.

Setting β = 1 (having a uniform prior), the posterior distribu-
tion becomes; p(Ahn|xn, hn) = Dirichlet(cn1,1, c

n
1,2, . . . , c

n
L,L).

We treat the normalized state transition count matrices
snl1,l2

= cnl1,l2
/
∑
l1,l2 c

n
l1,l2

as a sample from the posterior of
the transition matrix.

So, the graphical model becomes:

•Observations, normalized transition counts: sn.
•Dirichlet parameters of cluster k: α(:, k) = αk.

Claim: The posterior parameters of each cluster and ob-
servable moments are related as the following:

m := E[s]; tl ∈ RL
2
, tli := E[s2i ]−

1

α0 + 1
E[si] if i = l,

tli := E[slsi] if i 6= l

M2 := E[s⊗ s]− 1

α0 + 1
diag(m)

M3 := E[s⊗ s⊗ s]− 1

α0 + 2

(
L2∑
l=1

(el ⊗ el ⊗ tl) + (el ⊗ tl ⊗ el)

+ (tl ⊗ el ⊗ el)

)
− 2

(α0 + 1)(α0 + 2)

 L2∑
l=1

ml(el ⊗ el ⊗ el)


then,

M2 =
1

α0(α0 + 1)

K∑
k=1

πk (αk ⊗ αk)

M3 =
1

α0(α0 + 1)(α0 + 2)

K∑
k=1

πk (αk ⊗ αk ⊗ αk)

where, α0 =
∑K
k=1αk, el is the canonical basis for RL2

and
⊗ is the outer product operator.

Having the parameters in the symmetric tensor form, we
can apply the existing spectral learning procedures to esti-
mate α1:K.

4. Experimental Results

•We generated 100 data sets. Each set is composed of
60 sequences, with K = 3.
• The prior cluster probabilities p(hn) and transition matri-

ces A1:3 are generated randomly.

First Experiment:
•Comparison of clustering accuracies of the spectral

learning and EM algorithms (4 algorithms).
•Results for varying sequence lengths are shown in Figure

3.
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Figure 3: Comparison of clustering accuracies on
synthetic data for differing sequence lengths

•Mixture of Dirichlet distributions yield the highest cluster-
ing accuracies for all sequence lengths.
•Given sufficient data, spectral algorithms give higher

clustering accuracies compared to their EM counterparts.

Second Experiment:

•We next investigate the effect of changing L (cardinality
of observations). Results for differing L are given in Fig-
ure 4.
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Figure 4: Effect of changing L on clustering accuracy

•Number of states L has the least significant effect on
spectral mixture of Dirichlet algorithm.

• In experiments with short sequences, the spectral learn-
ing for mixture of Markov models is the most sensitive
algorithm to increasing L.

• All algorithms become less sensitive to L as sequence
length increases.

Third Experiment:

•Next, we investigate cluster similarity on clustering accu-
racy.

• For K = 3, transition matrices are generated as Ak =
(1−λ)Ã0+λÃk, where Ã0, Ã1, Ã2, Ã3 ∼ Dirichlet(1,. . . ,1).
Results for differing λ are given in Figure 5.
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Figure 5: Effect of cluster similarity on clustering accuracy

• If there is enough data available, mixture of Dirichlet al-
gorithm yields high accuracy, even when λ = 0.1.

5. Conclusions

•Conclusion: Experimental results suggests that pro-
posed method outperforms EM and regular spectral
learning approach in several regimes.

• Future Work: Application of the algorithm on real-world
applications.
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