

Spectral Learning for Mixture of Markov Models

Y. Cem Sübakan¹, Barış Kurt², A. Taylan Cemgil², Bülent Sankur³

¹ University of Illinois at Urbana-Champaign, Computer Science Boğaziçi University, Computer Engineering ³ Boğaziçi University, Electrical & Electronics Engineering

Abstract

Problem statement: Sequence clustering by spectral learning for Mixture of Markov models.

Contribution: Regular spectral learning algorithms for latent variable models require fifth order moment. We reduce the sample complexity by learning mixture of Dirichlet distributions.

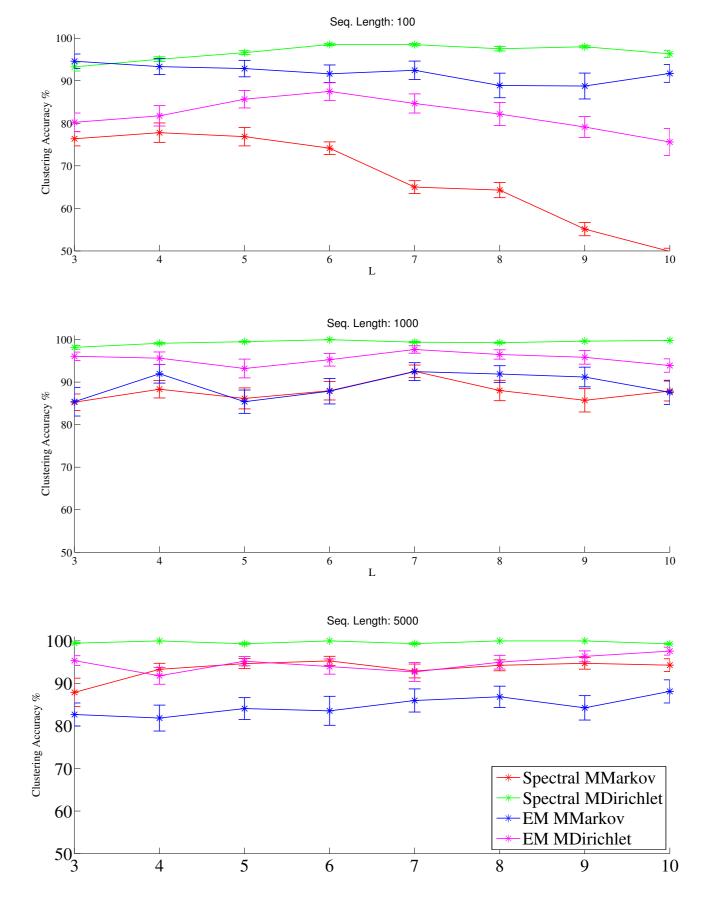
where, c_{l_1,l_2}^n stores the state transition counts of \mathbf{x}_n .

Setting $\beta = 1$ (having a uniform prior), the posterior distribution becomes; $p(A_{h_n}|\mathbf{x}_n, h_n) = \text{Dirichlet}(c_{1,1}^n, c_{1,2}^n, \dots, c_{L,L}^n)$.

We treat the normalized state transition count matrices $s_{l_1,l_2}^n = c_{l_1,l_2}^n / \sum_{l_1,l_2} c_{l_1,l_2}^n$ as a sample from the posterior of the transition matrix

Second Experiment:

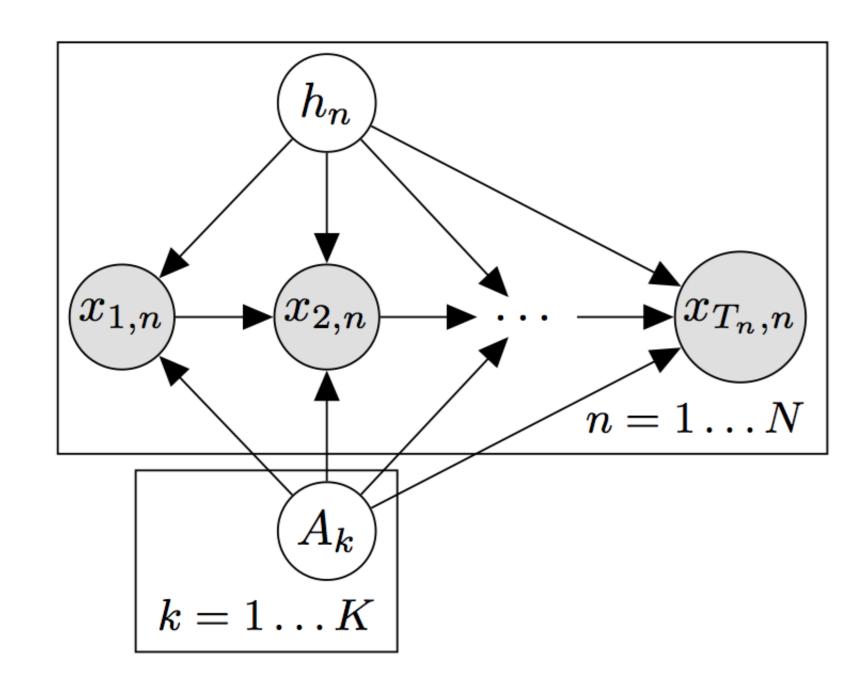
• We next investigate the effect of changing L (cardinality of observations). Results for differing *L* are given in Figure 4.



Conclusion: We experimentally show the superiority of our approach compared to EM and regular spectral learning.

1. Mixture of Markov Models

The graphical model is as follows:

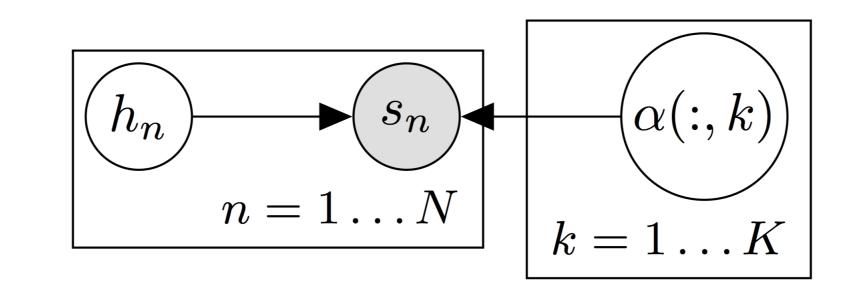


• Observation at sequence n, time t: $x_{t,n}$.

• Cluster indicator of sequence n: h_n .

• Transition matrix of cluster k: A_k .

So, the graphical model becomes:



- Observations, normalized transition counts: s_n .
- Dirichlet parameters of cluster k: $\alpha(:, k) = \alpha_k$.

Claim: The posterior parameters of each cluster and observable moments are related as the following:

$$\begin{split} m &:= \mathbb{E}[s]; \quad t^{l} \in \mathbb{R}^{L^{2}}, \quad t^{l}_{i} := \mathbb{E}[s^{2}_{i}] - \frac{1}{\alpha_{0} + 1} \mathbb{E}[s_{i}] \quad if \quad i = l, \\ t^{l}_{i} &:= \mathbb{E}[s_{l}s_{i}] \quad if \quad i \neq l \\ M_{2} &:= \mathbb{E}[s \otimes s] - \frac{1}{\alpha_{0} + 1} \mathsf{diag}(m) \\ M_{3} &:= \mathbb{E}[s \otimes s \otimes s] - \frac{1}{\alpha_{0} + 2} \left(\sum_{l=1}^{L^{2}} (e_{l} \otimes e_{l} \otimes t^{l}) + (e_{l} \otimes t^{l} \otimes e_{l}) \right. \\ &+ (t^{l} \otimes e_{l} \otimes e_{l}) \right) - \frac{2}{(\alpha_{0} + 1)(\alpha_{0} + 2)} \left(\sum_{l=1}^{L^{2}} m_{l}(e_{l} \otimes e_{l} \otimes e_{l}) \right) \\ then, \end{split}$$

Figure 4: Effect of changing L on clustering accuracy

- Number of states L has the least significant effect on spectral mixture of Dirichlet algorithm.
- In experiments with short sequences, the spectral learning for mixture of Markov models is the most sensitive algorithm to increasing *L*.
- All algorithms become less sensitive to L as sequence length increases.

The likelihood of observing a sequence, $\mathbf{x}_n = (x_{1,n}, x_{2,n}, \dots, x_{T_n,n})$ of length T_n is defined as:

$$p(x_n|A_{1:K}) = \sum_{k=1}^{K} p(h_n = k) \prod_{t=1}^{T_n} p(x_{t,n}|x_{t-1,n}, h_n = k)$$
$$= \sum_{k=1}^{K} \pi_k \prod_{t=1}^{T_n} \prod_{l_1=1}^{L} \prod_{l_2=1}^{L} A_{k,l_1,l_2}^{[x_{t,n}=l_1][x_{t-1,n}=l_2]}$$

• The ultimate learning goal is to estimate the cluster assignments $h_{1:N}$ given sequences $\mathbf{x}_{1:N}$.

2. Spectral Learning of Mixture of Markov Models

Learning Strategy: Learn transition matrices $A_{1:K}$ given sequences $\mathbf{x}_{1:N}$. Then, learn the assignments $h_{1:N}$.

Claim: The model parameters $A_{1:K}$ can be uniquely identified using fifth and fourth order moments:

 $B_{i,j,k} := p(x_5, x_4 = i, x_3, x_2 = j, x_1 = k) p(x'_5, x_4 = i, x_3, x_2 = j)^{-1}$ =A(:, i, :)diag $(A(j, k, :))A^{-1}(:, i, :)$

Drawback: This spectral learning approach requires moments up-to order five.

3. Spectral Learning of Mixture of Dirichlet

$$M_{2} = \frac{1}{\alpha_{0}(\alpha_{0}+1)} \sum_{k=1}^{K} \pi_{k} (\alpha_{k} \otimes \alpha_{k})$$
$$M_{3} = \frac{1}{\alpha_{0}(\alpha_{0}+1)(\alpha_{0}+2)} \sum_{k=1}^{K} \pi_{k} (\alpha_{k} \otimes \alpha_{k} \otimes \alpha_{k})$$

where, $\alpha_0 = \sum_{k=1}^{K} \alpha_k$, e_l is the canonical basis for \mathbb{R}^{L^2} and \otimes is the outer product operator.

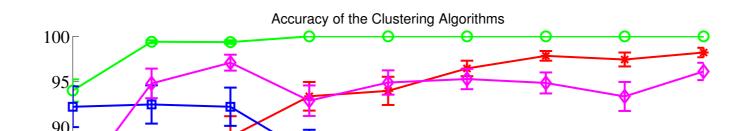
Having the parameters in the symmetric tensor form, we can apply the existing spectral learning procedures to estimate $\alpha_{1:K}$.

4. Experimental Results

- We generated 100 data sets. Each set is composed of 60 sequences, with K = 3.
- The prior cluster probabilities $p(h_n)$ and transition matrices $A_{1:3}$ are generated randomly.

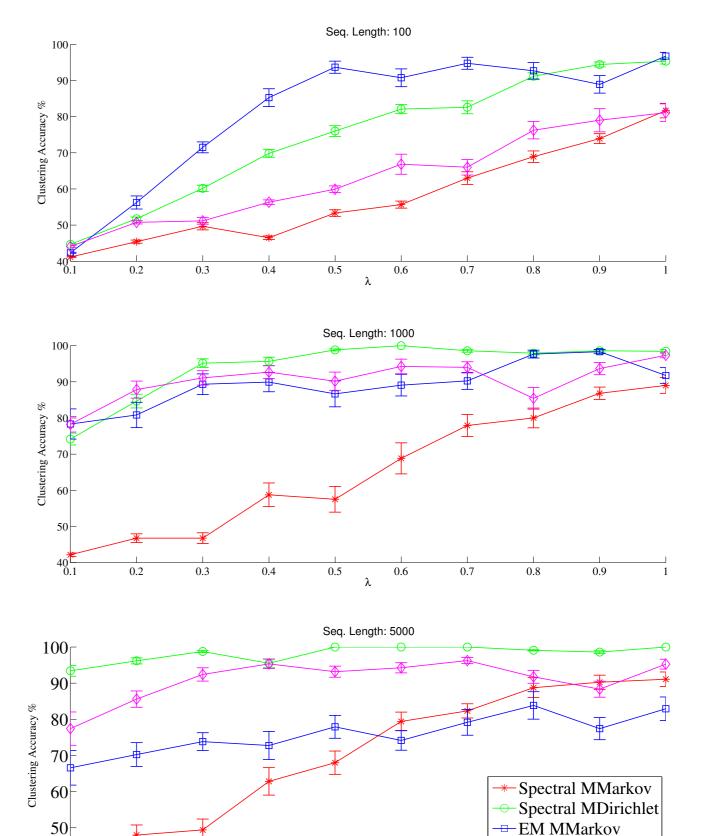
First Experiment:

- Comparison of clustering accuracies of the spectral learning and EM algorithms (4 algorithms).
- Results for varying sequence lengths are shown in Figure 3.



Third Experiment:

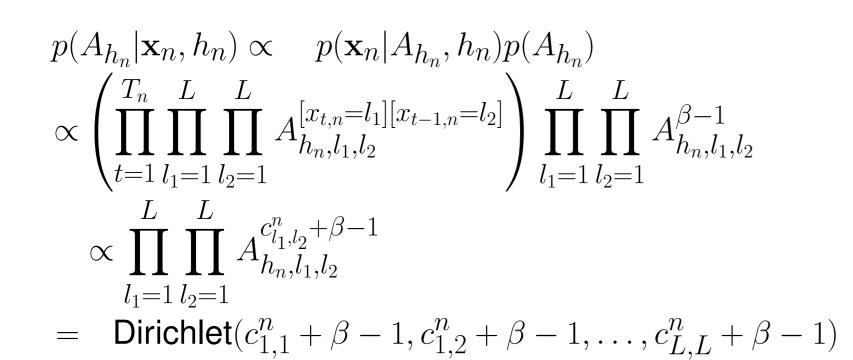
- Next, we investigate cluster similarity on clustering accuracy.
- For K = 3, transition matrices are generated as $A_k =$ $(1-\lambda)\tilde{A}_0 + \lambda\tilde{A}_k$, where $\tilde{A}_0, \tilde{A}_1, \tilde{A}_2, \tilde{A}_3 \sim \text{Dirichlet}(1, \dots, 1)$. Results for differing λ are given in Figure 5.



Distributions

Learning Strategy: Alternatively, one can learn a mixture of posterior distributions of transition matrices, which is mixture of Dirichlet distributions, to estimate $h_{1 \cdot N}$.

Using conjugate Dirichlet prior, the posterior is also Dirichlet:



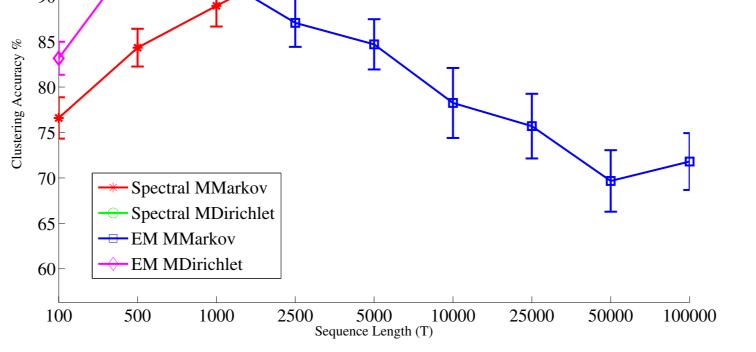


Figure 3: Comparison of clustering accuracies on synthetic data for differing sequence lengths

- Mixture of Dirichlet distributions yield the highest clustering accuracies for all sequence lengths.
- Given sufficient data, spectral algorithms give higher clustering accuracies compared to their EM counterparts.

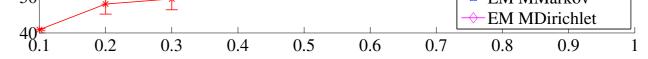


Figure 5: Effect of cluster similarity on clustering accuracy

• If there is enough data available, mixture of Dirichlet algorithm yields high accuracy, even when $\lambda = 0.1$.

5. Conclusions

- Conclusion: Experimental results suggests that proposed method outperforms EM and regular spectral learning approach in several regimes.
- Future Work: Application of the algorithm on real-world applications.