Generative Modeling of Sequential Data

Cem Subakan

University of Illinois at Urbana-Champaign

April 6'th, 2018

What is Generative Modeling?

00000000000000000000
11111111111111111111111
22222222222222222222
33333333333333333333
44444444444444444444
55555555555555555555
6666666666666666666
77777777777777777747
88888888888888888884
99999999499999999999

What is Generative Modeling?

00000000000000000000 11111111111111111111 22242222222222222222 33333333333333333333 44444444444444444444 55555555555555555555 66666666666666666666 77777777777177777777 88888888888888888888 99999999999999999999

- Learning by assuming a generative process
- E.g. fitting a multivariate Gaussian, mixture model, NMF, etc.
- Short answer to why question: Extracting structure out of data, understanding data
- Learning by assuming a generative process
- E.g. fitting a multivariate Gaussian, mixture model, NMF, etc.
- Short answer to why question: Extracting structure out of data, understanding data
- Clustering (mixture models)
- Learning by assuming a generative process
- E.g. fitting a multivariate Gaussian, mixture model, NMF, etc.
- Short answer to why question: Extracting structure out of data, understanding data
- Clustering (mixture models)
- Document Analysis (LDA)
- Learning by assuming a generative process
- E.g. fitting a multivariate Gaussian, mixture model, NMF, etc.
- Short answer to why question: Extracting structure out of data, understanding data
- Clustering (mixture models)
- Document Analysis (LDA)
- Audio Source Separation (NMF)
- Learning by assuming a generative process
- E.g. fitting a multivariate Gaussian, mixture model, NMF, etc.
- Short answer to why question: Extracting structure out of data, understanding data
- Clustering (mixture models)
- Document Analysis (LDA)
- Audio Source Separation (NMF)
- Image in-painting
- Learning by assuming a generative process
- E.g. fitting a multivariate Gaussian, mixture model, NMF, etc.
- Short answer to why question: Extracting structure out of data, understanding data
- Clustering (mixture models)
- Document Analysis (LDA)
- Audio Source Separation (NMF)
- Image in-painting
- Generating random images (my favorite)

Generative Modeling in Action

Weight and Heights of the members of an African tribe

$$
\begin{aligned}
h_{n} & \sim \operatorname{Discrete}([\pi, 1-\pi]) \\
x_{n} \mid h_{n} & \sim \mathcal{N}\left(\mu_{h_{n}}, \Sigma_{h_{n}}\right)
\end{aligned}
$$

$$
\begin{gathered}
\text { Learning: } \\
\max _{\theta} \sum_{n} \log p\left(x_{n} \mid \theta\right)
\end{gathered}
$$

Generative Modeling in Action

Weight and Heights of the members of an African tribe

$$
\begin{aligned}
h_{n} & \sim \operatorname{Discrete}([\pi, 1-\pi]) \\
x_{n} \mid h_{n} & \sim \mathcal{N}\left(\mu_{h_{n}}, \Sigma_{h_{n}}\right)
\end{aligned}
$$

Learning:

$$
\max _{\theta} \sum_{n} \log p\left(x_{n} \mid \theta\right)
$$

Generative Modeling in Action

Weight and Heights of the members of an African tribe

$$
\begin{aligned}
h_{n} & \sim \operatorname{Discrete}([\pi, 1-\pi]) \\
x_{n} \mid h_{n} & \sim \mathcal{N}\left(\mu_{h_{n}}, \Sigma_{h_{n}}\right)
\end{aligned}
$$

Learning:

$$
\max _{\theta} \sum_{n} \log p\left(x_{n} \mid \theta\right)
$$

A sequence example

Hugely popular NMF model: $X=W H$ (figure stolen from Paris)

Generated with the method in Chapter 4 of this thesis.

- Modeling/Representation
- How we represent the data (what model/distribution we use)
- Learning Paradigm
- The cost function used to measure between model distribution and underlying data distribution (e.g. maximum likelihood, adversarial training, method of moments)
- Optimization
- Given the model and the learning paradigm, the procedure with which we obtain the model parameters.

Contributions in this thesis

- A - Learning with multi-modal latent representations in implicit generative models (UAI 2018 submission - (New)
- B - Method of Moments Framework for HMMs with special structure (NIPS 2014, WASPAA 2015)
- C - Convolutional neural nets for source separation (MLSP 2017 best paper award)
- D - Diagonal RNNs in symbolic music modeling (WASPAA 2017)
- E - Identifiable Factorial HMMs (NIPS 2015, ICASSP 2017 submissions)
- F - GANs for source separation (ICASSP 2018) - (New)

Contributions in this thesis

- A - Learning with multi-modal latent representations in implicit generative models (UAI 2018 submission - (New)
- B - Method of Moments Framework for HMMs with special structure (NIPS 2014, WASPAA 2015)
- C - Convolutional neural nets for source separation (MLSP 2017 best paper award)
- D - Diagonal RNNs in symbolic music modeling (WASPAA 2017)
- E - Identifiable Factorial HMMs (NIPS 2015, ICASSP 2017 submissions)
- F - GANs for source separation (ICASSP 2018) - (New)

Plan

Method of Moments framework for structured HMMs
Method of Moments Introduction
Two Step Estimation Framework
Factorial HMM
Factorial HMM introduction
Shared Component Factorial Model
Revealing Factorial Model
Generative Models for Supervised Source Separation
Source Separation Introduction
Convolutional Neural Network Models for Audio
Generative Adversarial Source Separation
Learning the base Distribution in Implicit Generative Models
Methodology
Results
Conclusions
Summary and thoughts

- Typical objective is Maximum Likelihood:

$$
\begin{aligned}
& \max _{\theta} \mathbb{E}_{x} \log p(x \mid \theta) \\
= & \max _{\theta} \mathbb{E}_{x} \log \sum_{h} p(x, h \mid \theta)
\end{aligned}
$$

- Observations: x.
- Hidden Variables: h.
- Parameters (to be optimized): θ.
- Typical objective is Maximum Likelihood:

$$
\begin{aligned}
& \max _{\theta} \mathbb{E}_{x} \log p(x \mid \theta) \\
= & \max _{\theta} \mathbb{E}_{x} \log \sum_{h} p(x, h \mid \theta)
\end{aligned}
$$

- Observations: x.
- Hidden Variables: h.
- Parameters (to be optimized): θ.
- In general not convex.
- Typical objective is Maximum Likelihood:

$$
\begin{aligned}
& \max _{\theta} \mathbb{E}_{x} \log p(x \mid \theta) \\
= & \max _{\theta} \mathbb{E}_{x} \log \sum_{h} p(x, h \mid \theta)
\end{aligned}
$$

- Observations: x.
- Hidden Variables: h.
- Parameters (to be optimized): θ.
- In general not convex.
- This poses a challenge in terms of optimization. In general, it is difficult to train latent variable models. Can we devise methods to more easily reach solutions around the global optimum?

Method of Moments

- The idea is to estimate the models parameters θ by solving a system of non-linear equations formed with moments $\mathbb{E}\left[g_{k}(x)\right], k \in\{1, \ldots K\}$:

$$
\begin{gathered}
\mathbb{E}\left[g_{1}(x)\right]=f_{1}(\theta) \\
\vdots \\
\mathbb{E}\left[g_{K}(x)\right]=f_{K}(\theta)
\end{gathered}
$$

Method of Moments

- The idea is to estimate the models parameters θ by solving a system of non-linear equations formed with moments $\mathbb{E}\left[g_{k}(x)\right], k \in\{1, \ldots K\}$:

$$
\begin{gathered}
\mathbb{E}\left[g_{1}(x)\right]=f_{1}(\theta) \\
\vdots \\
\mathbb{E}\left[g_{K}(x)\right]=f_{K}(\theta)
\end{gathered}
$$

- Canonical Example: $x \sim \mathcal{G}(a, b)$:

$$
\begin{array}{rlrl}
\mathbb{E}[x] & =a b & & \widehat{b} \\
\mathbb{E}\left[x^{2}\right] & \left.\left.=a b^{2}+a^{2} b^{2}\right]-\mathbb{E}[x]^{2}\right) / \mathbb{E}[x] \\
& & \widehat{a} & =\mathbb{E}[x]^{2} /\left(\mathbb{E}\left[x^{2}\right]-\mathbb{E}[x]^{2}\right)
\end{array}
$$

Method of Moments

- The idea is to estimate the models parameters θ by solving a system of non-linear equations formed with moments $\mathbb{E}\left[g_{k}(x)\right], k \in\{1, \ldots K\}$:

$$
\begin{gathered}
\mathbb{E}\left[g_{1}(x)\right]=f_{1}(\theta) \\
\vdots \\
\mathbb{E}\left[g_{K}(x)\right]=f_{K}(\theta)
\end{gathered}
$$

- Canonical Example: $x \sim \mathcal{G}(a, b)$:

$$
\begin{array}{rlrl}
\mathbb{E}[x] & =a b & & \widehat{b} \\
\mathbb{E}\left[x^{2}\right] & \left.\left.=a b^{2}+a^{2} b^{2}\right]-\mathbb{E}[x]^{2}\right) / \mathbb{E}[x] \\
\widehat{a} & =\mathbb{E}[x]^{2} /\left(\mathbb{E}\left[x^{2}\right]-\mathbb{E}[x]^{2}\right)
\end{array}
$$

- Can we do this for latent variable models?

Spectral Learning of Mixture of HMMs

[MHMM, Smyth 97]

$$
\begin{aligned}
& h_{n} \sim \text { Categorical }\left(\pi_{n}\right) \\
& \mathbf{x}_{n} \sim \operatorname{HMM}\left(A_{n}, O_{n}\right)
\end{aligned}
$$

Spectral Learning of Mixture of HMMs

[MHMM, Smyth 97]

$$
\begin{aligned}
& h_{n} \sim \text { Categorical }\left(\pi_{n}\right) \\
& \mathbf{x}_{n} \sim \operatorname{HMM}\left(A_{n}, O_{n}\right)
\end{aligned}
$$

- Learning Goal: Estimate π_{n}, A_{n}, O_{n}, given $\mathbf{x}_{1: N}$

Global view for Mixture of HMMs

- An MHMM with local parameters $\theta_{1: K}=\left(O_{1: K}, A_{1: K}, \nu_{1: K}, \pi\right)$ is an HMM with global parameters $\bar{\theta}=(\bar{O}, \bar{A}, \bar{\nu})$, where:

$$
\bar{O}=\left[\begin{array}{lll}
O_{1} & \ldots & O_{K}
\end{array}\right], \quad \bar{A}=\left[\begin{array}{cccc}
A_{1} & \mathbf{0} & \ldots & \mathbf{0} \\
\mathbf{0} & A_{2} & \ldots & \mathbf{0} \\
& & \ddots & \\
\mathbf{0} & \mathbf{0} & \ldots & A_{K}
\end{array}\right], \quad \bar{\nu}=\left[\begin{array}{c}
\pi_{1} \nu_{1} \\
\pi_{2} \nu_{2} \\
\vdots \\
\pi_{K} \nu_{K}
\end{array}\right]
$$

Global view for Mixture of HMMs

- An MHMM with local parameters $\theta_{1: K}=\left(O_{1: K}, A_{1: K}, \nu_{1: K}, \pi\right)$ is an HMM with global parameters $\bar{\theta}=(\bar{O}, \bar{A}, \bar{\nu})$, where:

$$
\bar{O}=\left[\begin{array}{lll}
O_{1} & \ldots & O_{K}
\end{array}\right], \quad \bar{A}=\left[\begin{array}{cccc}
A_{1} & \mathbf{0} & \ldots & \mathbf{0} \\
\mathbf{0} & A_{2} & \ldots & \mathbf{0} \\
& & \ddots & \\
\mathbf{0} & \mathbf{0} & \ldots & A_{K}
\end{array}\right], \quad \bar{\nu}=\left[\begin{array}{c}
\pi_{1} \nu_{1} \\
\pi_{2} \nu_{2} \\
\vdots \\
\pi_{K} \nu_{K}
\end{array}\right]
$$

- Estimating the global parameters $\bar{\theta}$ with a moment algorithm would introduce permutation \mathcal{P} and noise to the estimates.
- How to impose this structural constraint on the estimator?

Two stage estimation for HMMs

HMM-Mixture model equivalence, [Kontorovich et al., 13]
An HMM with state marginals $p\left(h_{t}\right)$ is equivalent to a mixture model with mixing weights $\pi:=\frac{1}{T} \sum_{t=1}^{T} p\left(h_{t}\right)$, and the same emission parameters.

Two stage estimation for HMMs

HMM-Mixture model equivalence, [Kontorovich et al., 13]
An HMM with state marginals $p\left(h_{t}\right)$ is equivalent to a mixture model with mixing weights $\pi:=\frac{1}{T} \sum_{t=1}^{T} p\left(h_{t}\right)$, and the same emission parameters.

- First compute (estimate) \widehat{O}, and $\widehat{\pi}$.
- Then solve the convex problem:

$$
\begin{aligned}
\widehat{A}=\arg \min _{A} & \left\|M_{2}-\widehat{O} A \operatorname{diag}(\widehat{\pi}) \widehat{O}\right\|_{F} \\
\text { s.t. } & 1^{\top} A=1^{\top} \\
& A \geq 0 \\
& (1-\mathcal{M}) \odot A=0
\end{aligned}
$$

where \mathcal{M} encodes the block diagonal structure.

Two stage estimation for HMMs

HMM-Mixture model equivalence, [Kontorovich et al., 13]
An HMM with state marginals $p\left(h_{t}\right)$ is equivalent to a mixture model with mixing weights $\pi:=\frac{1}{T} \sum_{t=1}^{T} p\left(h_{t}\right)$, and the same emission parameters.

- First compute (estimate) \widehat{O}, and $\widehat{\pi}$.
- Then solve the convex problem:

$$
\begin{aligned}
& \widehat{A}=\arg \min _{A}\left\|M_{2}-\widehat{O} A \operatorname{diag}(\widehat{\pi}) \widehat{O}\right\|_{F} \\
& \text { s.t. } 1^{\top} A=1^{\top} \\
& A \geq 0 \\
&(1-\mathcal{M}) \odot A=0
\end{aligned}
$$

where \mathcal{M} encodes the block diagonal structure.

- Problem: \widehat{O} is still permuted.

Two stage estimation for HMMs

HMM-Mixture model equivalence, [Kontorovich et al., 13]
An HMM with state marginals $p\left(h_{t}\right)$ is equivalent to a mixture model with mixing weights $\pi:=\frac{1}{T} \sum_{t=1}^{T} p\left(h_{t}\right)$, and the same emission parameters.

- First compute (estimate) \widehat{O}, and $\widehat{\pi}$.
- Then solve the convex problem:

$$
\begin{aligned}
& \widehat{A}=\arg \min _{A}\left\|M_{2}-\widehat{O} A \operatorname{diag}(\widehat{\pi}) \widehat{O}\right\|_{F} \\
& \text { s.t. } 1^{\top} A=1^{\top} \\
& A \geq 0 \\
&(1-\mathcal{M}) \odot A=0
\end{aligned}
$$

where \mathcal{M} encodes the block diagonal structure.

- Problem: \widehat{O} is still permuted.
- But \widehat{A} is de-permutable! (if we remove the block diagonal constraint)

Two stage estimation framework with structural constraints:

Two stage estimation framework

- Get rough/permuted estimates for the parameters $\widehat{O}, \widehat{A}, \widehat{\pi}$.
- De-permute A. (Solve the graph problem dictated by model)
- Solve:

$$
\begin{aligned}
& \min _{A}\left\|M_{2}-\widehat{O} A \operatorname{diag}(\widehat{\pi}) \widehat{O}\right\|_{F} \\
& \text { s.t. } 1^{\top} A=1^{\top} \\
& A \geq 0 . \\
& f(\mathcal{M}, A)=0
\end{aligned}
$$

- f, and \mathcal{M} depend on the model.

Two stage estimation framework with structural constraints:

Two stage estimation framework

- Get rough/permuted estimates for the parameters $\widehat{O}, \widehat{A}, \widehat{\pi}$.
- De-permute A. (Solve the graph problem dictated by model)
- Solve:

$$
\begin{array}{ll}
\min _{A} & \left\|M_{2}-\widehat{O} A \operatorname{diag}(\widehat{\pi}) \widehat{O}\right\|_{F} \\
\text { s.t. } 1^{\top} A=1^{\top} \\
& A \geq 0 . \\
& f(\mathcal{M}, A)=0
\end{array}
$$

- f, and \mathcal{M} depend on the model.

For $\mathrm{MHMM} \mathcal{M}$ is the complement of a binary block diagonal matrix.

Mixture of HMMs: De-permutation

- $\lim _{e \rightarrow \infty} \bar{A}^{e}=\left[\bar{v}_{1} 1_{M}^{\top}, \bar{v}_{2} 1_{M}^{\top}, \ldots, \bar{v}_{K} 1_{M}^{\top}\right]$, where \bar{v}_{k} is the k^{\prime} th eigenvector of \bar{A}.

Mixture of HMMs: De-permutation

- $\lim _{e \rightarrow \infty} \bar{A}^{e}=\left[\bar{v}_{1} 1_{M}^{\top}, \bar{v}_{2} 1_{M}^{\top}, \ldots, \bar{v}_{K} 1_{M}^{\top}\right]$, where \bar{v}_{k} is the k^{\prime} th eigenvector of \bar{A}.

- What happens for $\mathcal{P}(\bar{A})$:

Mixture of HMMs: De-permutation

- $\lim _{e \rightarrow \infty} \bar{A}^{e}=\left[\bar{v}_{1} 1_{M}^{\top}, \bar{v}_{2} 1_{M}^{\top}, \ldots, \bar{v}_{K} 1_{M}^{\top}\right]$, where \bar{v}_{k} is the k^{\prime} th eigenvector of \bar{A}.

- What happens for $\mathcal{P}(\bar{A})$:

- What happens in practice:

- But we can estimate the number of HMMs:

- Then form rank- \widehat{K} reconstruction A^{r} :

$$
A^{r}=V_{1: \widehat{K}} \Lambda_{1: \widehat{K}} V^{-1}
$$

- Then Cluster. (A La Spectral Clustering)

Experimental Results on Clustering Handwritten Digits

- Experiment: Clustering handwritten digit trajectories by learning MHMMs.
- We form datasets composed of digits 1-2, 1-3, 2-3, and so on.

Algorithm	1v2	$\mathbf{1 v 3}$	$\mathbf{1 v 4}$	$\mathbf{1 v 5}$	$\mathbf{2 v 3}$	$\mathbf{2 v 4}$	$\mathbf{2 v 5}$
Spectral	100	70	54	55	83	99	99
EM init. at Random	96	99	98	54	83	100	100
EM init. w/ Spectral	$\mathbf{1 0 0}$	$\mathbf{9 9}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{9 6}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$

Numbers show percent clustering accuracies.

- Initializing EM with the spectral algorithm boosts the results.

Generalization

Generalization

Generalization

Bakis-HMM

- Is an HMM that can only move one state at a time.
- $A=\left[\begin{array}{ccccc}1 & 0 & \ldots & 0 & 0 \\ 1 & 1 & \ldots & 0 & 0 \\ 0 & \ldots & \ddots & \ldots & 0 \\ 0 & \ldots & 1 & 1 & 0 \\ 0 & \ldots & 0 & 1 & 1\end{array}\right]$
- Every state is visited exactly once.
- Depermutation: Find a maximum weight Hamiltonian circuit on \widehat{A}. (Traveling Salesman problem)

Experimental Results on Speech Onset Detection

- Triangles denote randomly initialized EM performance on run-time vs f-measure. (EM is implemented in C)
- Numbers show spectral + number of EM iterations.
- Spectral Algorithm accelerates EM learning.

Contribution and summary

- Contribution: A method of moments based framework for HMMs with special transition structure. (learning paradigm)
- Helps in initializing EM. (optimization)

Contribution and summary

- Contribution: A method of moments based framework for HMMs with special transition structure. (learning paradigm)
- Helps in initializing EM. (optimization)

Thoughts on method of moments:

- Good:
- Global
- Initialization: No need to worry about initialization (Great initializer for EM (optimization)).
- Scalable: Computationally cheap: Gather the moments, factorize a small matrix.
- Interesting/Theoretical: Bounds.

Contribution and summary

- Contribution: A method of moments based framework for HMMs with special transition structure. (learning paradigm)
- Helps in initializing EM. (optimization)

Thoughts on method of moments:

- Good:
- Global
- Initialization: No need to worry about initialization (Great initializer for EM (optimization)).
- Scalable: Computationally cheap: Gather the moments, factorize a small matrix.
- Interesting/Theoretical: Bounds.
- Bad:
- Model Mismatch: Horrible in regards to model mismatch. (Hard assumption on model Unlike ML, which minimizes $K L(p \| q)$.

Contribution and summary

- Contribution: A method of moments based framework for HMMs with special transition structure. (learning paradigm)
- Helps in initializing EM. (optimization)

Thoughts on method of moments:

- Good:
- Global
- Initialization: No need to worry about initialization (Great initializer for EM (optimization)).
- Scalable: Computationally cheap: Gather the moments, factorize a small matrix.
- Interesting/Theoretical: Bounds.
- Bad:
- Model Mismatch: Horrible in regards to model mismatch. (Hard assumption on model Unlike ML, which minimizes $K L(p \| q)$.
- Ugly:
- You can get complex numbers for parameter estimates/likelihoods.

Plan

Method of Moments framework for structured HMMs
Method of Moments Introduction
Two Step Estimation Framework
Factorial HMM
Factorial HMM introduction
Shared Component Factorial Model
Revealing Factorial Model
Generative Models for Supervised Source Separation
Source Separation Introduction
Convolutional Neural Network Models for Audio
Generative Adversarial Source Separation
Learning the base Distribution in Implicit Generative Models
Methodology
Results
Conclusions
Summary and thoughts
[Ghahramani, Jordan; 97]

$$
r_{t}^{K} \mid r_{t-1}^{K} \sim \operatorname{Cat}\left(A^{K} r_{t-1}^{K}\right)
$$

$$
x_{t} \mid r_{t}^{1}, \ldots, r_{t}^{K} \sim \mathcal{N}\left(\left[O^{1}, \ldots, O^{K}\right]\left[\begin{array}{c}
r_{t}^{1} \\
\ldots \\
r_{t}^{K}
\end{array}\right], \sigma^{2} I\right)
$$

Factorial HMM

[Ghahramani, Jordan; 97]

$$
r_{t}^{K} \mid r_{t-1}^{K} \sim \operatorname{Cat}\left(A^{K} r_{t-1}^{K}\right)
$$

$$
x_{t} \mid r_{t}^{1}, \ldots, r_{t}^{K} \sim \mathcal{N}\left(\left[O^{1}, \ldots, O^{K}\right]\left[\begin{array}{c}
r_{t}^{1} \\
\ldots \\
r_{t}^{K}
\end{array}\right], \sigma^{2} I\right)
$$

$$
X=\underbrace{O}_{\text {The dictionary }} \underbrace{R}_{\text {Activations }}+\underbrace{\epsilon}_{\text {noise }}
$$

Some Dictionary Learning Perspective..

- General Dictionary Learning

$$
\min _{O, R}\|X-\underbrace{O}_{\text {Dictionary }} \underbrace{R}_{\text {Activations }}\|_{F}
$$

- PCA: Both O and R are orthogonal.
- ICA: Solvable if R has independent coordinates.
- Mixture Model: R is one sparse. Solvable is O has full column rank.
- Sparse Dictionary Learning: Solvable if O is square and R is sparse Bernouilli-Gaussian. [Spielman et al. 12]

Some Dictionary Learning Perspective..

- General Dictionary Learning

$$
\min _{O, R}\|X-\underbrace{O}_{\text {Dictionary }} \underbrace{R}_{\text {Activations }}\|_{F}
$$

- PCA: Both O and R are orthogonal.
- ICA: Solvable if R has independent coordinates.
- Mixture Model: R is one sparse. Solvable is O has full column rank.
- Sparse Dictionary Learning: Solvable if O is square and R is sparse Bernouilli-Gaussian. [Spielman et al. 12]
- Factorial Models:

$$
O=\left[\begin{array}{lll}
O^{1} & \ldots & O^{K}
\end{array}\right], R=\left[\begin{array}{c}
R^{1} \\
\vdots \\
R^{K}
\end{array}\right]
$$

- No constraint on O, columns of R are block- K sparse.
- No Unique Solution!!!

FHMM Identifiability

```
Rank Deficiency
rank}(R)\leqMK - (K - 1)
```

Rank Deficiency
$\operatorname{rank}(R) \leq M K-(K-1)$
Proof Sketch:

$$
\operatorname{dim}\left(\operatorname{null}\left(R^{\top}\right)\right) \geq K-1
$$

Therefore from rank-nullity theorem $\operatorname{rank}(R) \leq M K-(K-1)$.

FHMM is unidentifiable

For a given assignment matrix $R \in \mathbb{R}^{K M \times T}$ There exists $O_{1} \neq O_{2}$ such that $\prod_{t} \mathcal{N}\left(x_{t} \mid O_{1} R, \sigma^{2} I\right)=\prod_{t} \mathcal{N}\left(x_{t} \mid O_{2} R, \sigma^{2} I\right)$.

Rank Deficiency
$\operatorname{rank}(R) \leq M K-(K-1)$
Proof Sketch:

$$
\operatorname{dim}\left(\operatorname{null}\left(R^{\top}\right)\right) \geq K-1
$$

Therefore from rank-nullity theorem $\operatorname{rank}(R) \leq M K-(K-1)$.

FHMM is unidentifiable

For a given assignment matrix $R \in \mathbb{R}^{K M \times T}$ There exists $O_{1} \neq O_{2}$ such that $\prod_{t} \mathcal{N}\left(x_{t} \mid O_{1} R, \sigma^{2} I\right)=\prod_{t} \mathcal{N}\left(x_{t} \mid O_{2} R, \sigma^{2} I\right)$.

Proof: Since $\operatorname{dim}\left(\operatorname{null}\left(R^{\top}\right)\right) \geq K-1,\left(O_{1}-O_{2}\right) R=0$, for $O_{1} \neq O_{2}$.

Shared Component FM
$\forall k, O^{k}=\left[\begin{array}{ccccc}\mid & \mid & \mid & \mid & \mid \\ \mu_{k}^{1} & \mu_{2}^{k} & \ldots & \mu_{M-1}^{k} & s \\ \mid & \mid & \mid & \mid & \mid\end{array}\right]$
SC-FM is identifiable
Given an assignment matrix \widetilde{R} which is rank $M K-(K-1)$, the emission matrix of an SC-FM is identifiable.
Proof Sketch:

$$
\operatorname{dim}\left(\operatorname{null}\left(R^{\top}\right)\right)=0
$$

Therefore $\left(O_{1}-O_{2}\right) R \neq 0, \forall O_{1} \neq O_{2}$.

Learning Example for Shared Component Factorial Model

- Gist: If the shared component s is incoherent, then we can identify it, and reveal the other components.

Example Observations

Obtained Components with SC-FM

Components with regular model-EM

Learning Example for Shared Component Factorial Model

- Gist: If the shared component s is incoherent, then we can identify it, and reveal the other components.

Example Observations

Obtained Components with SC-FM

Components with regular model-EM

- The shared component + incoherence assumption a bit too restrictive. Can we think of another model?

- Identifiability follows similarly from the activation matrix R.

Revealing FHMM Practical Algorithm

Practical Algorithm for Revealing FHMM

- Cluster the data matrix $X \in \mathbb{R}^{L \times T}$ into clusters $X^{c} \in \mathbb{R}^{L \times C}$.
- Solve:

$$
\begin{aligned}
& \min _{H}\left\|X^{c}-X^{c} H\right\|_{F}^{2}+\beta\|H\|_{1}, \\
& \text { s.t. } H_{i, i}=0, \text { for } 1 \leq i \leq C, \\
& H \geq 0
\end{aligned}
$$

where $H \in \mathbb{R}^{C \times C}$.

- Construct a bi-partite graph by reading the solution for H.

Revealing FHMM Practical Algorithm

Practical Algorithm for Revealing FHMM

- Cluster the data matrix $X \in \mathbb{R}^{L \times T}$ into clusters $X^{c} \in \mathbb{R}^{L \times C}$.
- Solve:

$$
\begin{aligned}
& \min _{H}\left\|X^{c}-X^{c} H\right\|_{F}^{2}+\beta\|H\|_{1}, \\
& \text { s.t. } H_{i, i}=0, \text { for } 1 \leq i \leq C, \\
& \quad H \geq 0
\end{aligned}
$$

where $H \in \mathbb{R}^{C \times C}$.

- Construct a bi-partite graph by reading the solution for H.
- Condition for learnability: Let $O_{1}=\left[x_{0}, x_{1}\right], O_{2}=\left[y_{0}, y_{1}\right]$. Observed combinations needs to form a connected graph (Connectivity), and we need to observe all nodes and edges (Observability).

- We mixed recording of double bass and flute (at 0dB).
- The observed mixtures satisfy the connectivity constraint.

- We obtain almost perfect source separation.

Sensitivity on number of clusters

- The algorithm is robust to the choice of number of clusters C.

Contributions and thoughts

- Contribution 1: We have shown that the standard Factorial Model is not statistically identifiable. (modeling)
- Contribution 2: We have proposed two identifiable alternatives, along with practical parameter estimation algorithms. (modeling and optimization)
- Future work:
- Can we relax the observability assumption so that we only require to observe less nodes in the connectivity graph?
- Potential application in semi-supervised source separation.

Plan

Method of Moments framework for structured HMMs
Method of Moments Introduction
Two Step Estimation Framework
Factorial HMM
Factorial HMM introduction
Shared Component Factorial Model
Revealing Factorial Model
Generative Models for Supervised Source Separation Source Separation Introduction
Convolutional Neural Network Models for Audio Generative Adversarial Source Separation

Learning the base Distribution in Implicit Generative Models
Methodology
Results
Conclusions
Summary and thoughts

Estimate for Source 1
Estimate for Source 2

Generative Supervised Source Separation

- Assumes the following generative model:

$$
\begin{aligned}
s_{1} & \sim p_{\text {out }}\left(s_{1} \mid f_{\theta^{1}}\left(h_{1}\right)\right) \\
s_{2} & \sim p_{\text {out }}\left(s_{2} \mid f_{\theta^{2}}^{2}\left(h_{2}\right)\right) \\
x & \sim p_{\text {out }}\left(x \mid s_{1}+s_{2}\right)
\end{aligned}
$$

Generative Supervised Source Separation

- Assumes the following generative model:

$$
\begin{aligned}
s_{1} & \sim p_{\text {out }}\left(s_{1} \mid f_{\theta^{1}}\left(h_{1}\right)\right) \\
s_{2} & \sim p_{\text {out }}\left(s_{2} \mid f_{\theta^{2}}^{2}\left(h_{2}\right)\right) \\
x & \sim p_{\text {out }}\left(x \mid s_{1}+s_{2}\right)
\end{aligned}
$$

- First train the generative models for each source (with Maximum Likelihood):

$$
\max _{\theta^{k}} \mathbb{E}_{s_{k}} p\left(s_{k} \mid f_{\theta^{k}}\left(h_{k}\right)\right)
$$

where $h_{k}=f_{\theta^{k}}^{\text {enc }}\left(s_{k}\right)$, is some encoding.

Generative Supervised Source Separation

In test time, the source estimates are obtained via:

$$
\widehat{h_{1}}, \widehat{h_{2}}=\arg \max _{h_{1}, h_{2}} p\left(x \mid f_{\theta^{1}}\left(h_{1}\right)+f_{\theta^{2}}\left(h_{2}\right)\right)
$$

$$
\widehat{h_{1}}, \widehat{h_{2}}=\arg \max _{h_{1}, h_{2}} p\left(x \mid f_{\theta^{1}}\left(h_{1}\right)+f_{\theta^{2}}\left(h_{2}\right)\right)
$$

Estimate for Source 1
Estimate for Source 2

Separation Example

- Separation is usually done on spectrograms.

- Because of non-negativity, we usually use $p\left(X \mid f_{\theta}(H)\right)=\mathcal{P O}\left(X ; f_{\theta}(H)\right)$
- Non-Negative Matrix Factorization (NMF) [Smaragdis 2003]

$$
f_{\theta}(H)=W H, W \geq 0, H \geq 0
$$

Only, the forward model $f_{\theta}(H)$ is specified, H is obtained with an algorithm.

- Non-Negative Matrix Factorization (NMF) [Smaragdis 2003]

$$
f_{\theta}(H)=W H, W \geq 0, H \geq 0
$$

Only, the forward model $f_{\theta}(H)$ is specified, H is obtained with an algorithm.

- Convolutive NMF [Smaragdis 2004]

$$
f_{\theta}(H)=\sum_{k=0}^{K} W_{k} * H_{k}, W \geq 0, H \geq 0
$$

- Non-Negative Matrix Factorization (NMF) [Smaragdis 2003]

$$
f_{\theta}(H)=W H, W \geq 0, H \geq 0
$$

Only, the forward model $f_{\theta}(H)$ is specified, H is obtained with an algorithm.

- Convolutive NMF [Smaragdis 2004]

$$
f_{\theta}(H)=\sum_{k=0}^{K} W_{k} * H_{k}, W \geq 0, H \geq 0
$$

- Linear mappings allow adaptive step-size optimization algorithms such as EM, multiplicative update rules (even globally optimal methods such as method of moments). However representation wise, they are limited.
- Non-Negative Matrix Factorization (NMF) [Smaragdis 2003]

$$
f_{\theta}(H)=W H, W \geq 0, H \geq 0
$$

Only, the forward model $f_{\theta}(H)$ is specified, H is obtained with an algorithm.

- Convolutive NMF [Smaragdis 2004]

$$
f_{\theta}(H)=\sum_{k=0}^{K} W_{k} * H_{k}, W \geq 0, H \geq 0
$$

- Linear mappings allow adaptive step-size optimization algorithms such as EM, multiplicative update rules (even globally optimal methods such as method of moments). However representation wise, they are limited.
- Rest of the thesis will utilize generative models which employ more general non-linear mappings. (neural networks)
- Neural Network Alternative for NMF [Smaragdis, Venkataramani, 2016]

$$
\begin{aligned}
f_{\theta}(X) & =\sigma(W H(X)) \\
& =\sigma\left(W f_{\theta}^{\mathrm{enc}}(X)\right) \\
& =\sigma\left(W \sigma\left(W^{\mathrm{enc}} X\right)\right)
\end{aligned}
$$

where $f_{\theta}^{\text {enc }}(X)$ is the encoder, and it is learned.

- Neural Network Alternative for NMF [Smaragdis, Venkataramani, 2016]

$$
\begin{aligned}
f_{\theta}(X) & =\sigma(W H(X)) \\
& =\sigma\left(W f_{\theta}^{\mathrm{enc}}(X)\right) \\
& =\sigma\left(W \sigma\left(W^{\mathrm{enc}} X\right)\right)
\end{aligned}
$$

where $f_{\theta}^{\text {enc }}(X)$ is the encoder, and it is learned.

- Convolutive neural-net alternative?

Convolutive Neural Network Alternative

- Neural Network Alternatives for Convolutive NMF [Best student paper award, MLSP 2017]

$$
f_{\theta}(H(X))=\sigma\left(\sum_{k=0}^{K} W_{k} * H_{k}(X)\right)
$$

where $H_{k}(X)=\sigma\left(\sum_{j}\left(W_{k}^{i n v} * X\right)_{j}\right)$

Convolutive Neural Network Alternative

- Neural Network Alternatives for Convolutive NMF [Best student paper award, MLSP 2017]

$$
f_{\theta}(H(X))=\sigma\left(\sum_{k=0}^{K} W_{k} * H_{k}(X)\right)
$$

where $H_{k}(X)=\sigma\left(\sum_{j}\left(W_{k}^{i n v} * X\right)_{j}\right)$

- We can also try RNNs to model arbitrarily long dependencies.

Using RNNs in the Encoder

- RNNs in the encoder:

$$
H_{k}(X)=\sigma\left(\sum_{j}\left(R N N_{k}(X)\right)_{j}\right)
$$

- Dataset: Male-female speaker mixtures from TIMIT dataset.
- Training set: 9 utterances for each speaker.
- Test set: Single sentence mixture at 0dB.
- Evaluated for 25 pairs of speakers.
- Evaluation: BSS eval metrics. (SIR, SAR, SDR)
- We compare Feedforward-Feedforward, Convolutive-Convolutive, Recurrent-Convolutive Autoencoders.

- Conv-Conv, Conv-RNN, FF-FF autoencoders.
- Variance is over the speaker pairs.
- Significant SIR improvement with Convolutive Models.
- Recursive encoder model is better than the baseline, but not as good as the convolutive model.

Generative Adversarial Source Separation

- Maximum likelihood training requires specifying $p_{\text {out }}($.$) / loss function.$
- Instead of hand picking $p_{\text {out }}($.$) , we can use adversarial training.$

Generative Adversarial Source Separation

- Maximum likelihood training requires specifying $p_{\text {out }}($.$) / loss function.$
- Instead of hand picking $p_{\text {out }}($.$) , we can use adversarial training.$

ML objective

$\max _{\theta_{k}} \mathbb{E}_{s_{k}} p_{\text {out }}\left(s_{k} \mid f_{\theta^{k}}\left(h_{k}\right)\right)$,

Generative Adversarial Source Separation

- Maximum likelihood training requires specifying $p_{\text {out }}($.$) / loss function.$
- Instead of hand picking $p_{\text {out }}($.$) , we can use adversarial training.$

ML objective
$\max _{\theta_{k}} \mathbb{E}_{s_{k}} p_{\text {out }}\left(s_{k} \mid f_{\theta^{k}}\left(h_{k}\right)\right), \quad \quad \min _{\xi} \max _{\theta_{k}} \mathbb{E}_{s_{k}} \log D_{\xi_{k}}\left(s_{k}\right)+\mathbb{E}_{h_{k}} \log \left(1-D_{\xi_{k}}\left(f_{\theta^{k}}\left(h_{k}\right)\right)\right)$

Generative Adversarial Source Separation

- Maximum likelihood training requires specifying $p_{\text {out }}($.$) / loss function.$
- Instead of hand picking $p_{\text {out }}($.$) , we can use adversarial training.$

ML objective

$\max _{\theta_{k}} \mathbb{E}_{s_{k}} p_{\text {out }}\left(s_{k} \mid f_{\theta^{k}}\left(h_{k}\right)\right), \quad \quad \min _{\xi} \max _{\theta_{k}} \mathbb{E}_{s_{k}} \log D_{\xi_{k}}\left(s_{k}\right)+\mathbb{E}_{h_{k}} \log \left(1-D_{\xi_{k}}\left(f_{\theta^{k}}\left(h_{k}\right)\right)\right)$

- Define the likelihood via a classifier $D($.$) .$
- In testing we can use the classifier:

$$
\max _{h_{1}, h_{2}} p_{\text {out }}\left(x \mid f_{\theta^{1}}\left(h_{1}\right)+f_{\theta^{2}}\left(h_{2}\right)\right)+\lambda\left(\sum_{k=1}^{2} D_{\xi_{k}}\left(f_{\theta^{k}}\left(h_{k}\right)\right)\right)
$$

Generative Adversarial Source Separation

$\widehat{h_{1}}, \widehat{h_{2}}=\arg \max _{h_{1}, h_{2}} p\left(x \mid f_{\theta^{1}}\left(h_{1}\right)+f_{\theta^{2}}\left(h_{2}\right)\right)+\lambda\left(\sum_{k=1}^{2} D_{\xi_{k}}\left(f_{\theta^{k}}\left(h_{k}\right)\right)\right)$

- Dataset: Male-female speaker mixtures from TIMIT dataset.
- Training set: 9 utterances for each speaker.
- Test set: Single sentence mixture at OdB.
- Evaluated for 25 pairs of speakers.
- Evaluation: BSS eval metrics. (SIR, SAR, SDR)
- We compare NMF, Variational Autoencoders, Denoising Autoencoder, GAN, and Wasserstein GAN, all with a multilayer perceptron architecture.

Contributions

- Contribution 1: We developed a neural network model which is an analog of convolutive NMF, both with convolutional and recurrent neural network architectures. (representation)
- Contribution 2: We showed that GANs worked better than maximum likelihood based methods on a speech source separation task.
- This is potentially because GANs are more agnostic to output noise. (learning paradigm)

Plan

Method of Moments framework for structured HMMs
Method of Moments Introduction
Two Step Estimation Framework
Factorial HMM
Factorial HMM introduction
Shared Component Factorial Model
Revealing Factorial Model
Generative Models for Supervised Source Separation
Source Separation Introduction
Convolutional Neural Network Models for Audio Generative Adversarial Source Separation

Learning the base Distribution in Implicit Generative Models Methodology
Results
Conclusions
Summary and thoughts

$$
\begin{gathered}
\text { VAEs: } \\
h \sim \mathcal{N}(0, l) \\
x \mid h \sim \mathcal{N}\left(f_{\theta}(h), \sigma^{2} l\right)
\end{gathered}
$$

GANs:

$$
h \sim \mathcal{N}(0, I)
$$

$$
x \mid h=f_{\theta}(h)
$$

- VAEs and GANs are very popular methods for generative model learning.

$$
\begin{gathered}
\text { VAEs: } \\
h \sim \mathcal{N}(0, l) \\
x \mid h \sim \mathcal{N}\left(f_{\theta}(h), \sigma^{2} l\right)
\end{gathered}
$$

GANs:

$$
\begin{aligned}
h & \sim \mathcal{N}(0, I) \\
x \mid h & =f_{\theta}(h)
\end{aligned}
$$

- VAEs and GANs are very popular methods for generative model learning.
- VAE is learned by gradient descent optimizing a lower bound to likelihood.

VAEs:

$$
\begin{aligned}
h & \sim \mathcal{N}(0, l) \\
x \mid h & \sim \mathcal{N}\left(f_{\theta}(h), \sigma^{2} l\right)
\end{aligned}
$$

GANs:

$$
\begin{aligned}
h & \sim \mathcal{N}(0, l) \\
x \mid h & =f_{\theta}(h)
\end{aligned}
$$

- VAEs and GANs are very popular methods for generative model learning.
- VAE is learned by gradient descent optimizing a lower bound to likelihood.
- GAN model is an implicit generative model. It is learned by using an auxiliary "discriminator" network. Optimization is very very tricky.

VAEs:
$h \sim \mathcal{N}(0, l)$
$x \mid h \sim \mathcal{N}\left(f_{\theta}(h), \sigma^{2} l\right)$

GANs:

$$
\begin{aligned}
h & \sim \mathcal{N}(0, l) \\
x \mid h & =f_{\theta}(h)
\end{aligned}
$$

- VAEs and GANs are very popular methods for generative model learning.
- VAE is learned by gradient descent optimizing a lower bound to likelihood.
- GAN model is an implicit generative model. It is learned by using an auxiliary "discriminator" network. Optimization is very very tricky.
- A big problem for both: They try to map a simplistic distribution such as isotropic Gaussian to the whole set of observations.

Get the base

VAEs:

$$
\begin{aligned}
h & \sim \mathcal{N}(0, l) \\
x \mid h & \sim \mathcal{N}\left(f_{\theta}(h), \sigma^{2} l\right)
\end{aligned}
$$

GANs:

$$
\begin{aligned}
h & \sim \mathcal{N}(0, l) \\
x \mid h & =f_{\theta}(h)
\end{aligned}
$$

VAE

GAN

Get the base

VAEs:

$$
\begin{aligned}
h & \sim \mathcal{N}(0, l) \\
x \mid h & \sim \mathcal{N}\left(f_{\theta}(h), \sigma^{2} l\right)
\end{aligned}
$$

GANs:

$$
\begin{aligned}
h & \sim \mathcal{N}(0, I) \\
x \mid h & =f_{\theta}(h)
\end{aligned}
$$

VAE

Get the base

VAEs:

$$
\begin{aligned}
h & \sim \mathcal{N}(0, l) \\
x \mid h & \sim \mathcal{N}\left(f_{\theta}(h), \sigma^{2} l\right)
\end{aligned}
$$

GANs:

$$
\begin{aligned}
h & \sim \mathcal{N}(0, I) \\
x \mid h & =f_{\theta}(h)
\end{aligned}
$$

VAE

- This is what we do. Why? - Allows complicated base distributions.
- This is what we do. Why? - Allows complicated base distributions.

- Implicit Generative Models:

$$
h \sim p_{\phi}^{0}(h), x=f_{\theta}(h)
$$

where, $p_{\phi}^{0}(h)$ is the base distribution and $f_{\theta}(h)$ is some forward mapping.

- The likelihood is given by,

$$
p_{\text {model }}(x \mid \theta, \phi)=p_{\phi}^{0}\left(f_{\theta}^{-1}(x)\right) V_{\theta}(x)
$$

where $V_{\theta}(x):=\left|\operatorname{det} \frac{\partial f_{\theta}^{-1}(x)}{\partial x}\right|=\left|\operatorname{det} \frac{\partial f_{\theta}(h)}{\partial h}\right|^{-1}$, which measures the volume change due to the transformation.

- Implicit Generative Models:

$$
h \sim p_{\phi}^{0}(h), x=f_{\theta}(h)
$$

where, $p_{\phi}^{0}(h)$ is the base distribution and $f_{\theta}(h)$ is some forward mapping.

- The likelihood is given by,

$$
p_{\text {model }}(x \mid \theta, \phi)=p_{\phi}^{0}\left(f_{\theta}^{-1}(x)\right) V_{\theta}(x)
$$

where $V_{\theta}(x):=\left|\operatorname{det} \frac{\partial f_{\theta}^{-1}(x)}{\partial x}\right|=\left|\operatorname{det} \frac{\partial f_{\theta}(h)}{\partial h}\right|^{-1}$, which measures the volume change due to the transformation.

- Main problem: This requires a square transformation. No good for high dimensional structured data.
- Implicit Generative Models:

$$
h \sim p_{\phi}^{0}(h), x=f_{\theta}(h)
$$

where, $p_{\phi}^{0}(h)$ is the base distribution and $f_{\theta}(h)$ is some forward mapping.

- The likelihood is given by,

$$
p_{\text {model }}(x \mid \theta, \phi)=p_{\phi}^{0}\left(f_{\theta}^{-1}(x)\right) V_{\theta}(x)
$$

where $V_{\theta}(x):=\left|\operatorname{det} \frac{\partial f_{\theta}^{-1}(x)}{\partial x}\right|=\left|\operatorname{det} \frac{\partial f_{\theta}(h)}{\partial h}\right|^{-1}$, which measures the volume change due to the transformation.

- Main problem: This requires a square transformation. No good for high dimensional structured data.
- Also joint optimization is difficult. (Joint in θ and ϕ)

IML with general mappings

Consider an autoencoder such that $f_{\theta}\left(f_{\psi}^{\text {enc }}(x)\right) \approx x$.
-Train the auto-encoder parameters θ, ψ such that:

$$
\min _{\theta, \psi} \sum_{n}\left\|f_{\theta}\left(f_{\psi}^{\mathrm{enc}}\left(x_{n}\right)\right)-x_{n}\right\|
$$

-Fit the base distribution on the latent space such that:

$$
\max _{\phi} \sum_{n} \log p_{\phi}^{0}\left(f_{\psi}^{e n c}\left(x_{n}\right)\right)
$$

This is approximately maximum likelihood:

$$
=\max _{\phi} \sum_{n} \log p_{\phi}^{0}\left(f_{\psi}^{e n c}\left(x_{n}\right)\right)+\log V\left(x_{n}\right)
$$

Base distribution parameters are independent from the volume term.

Training Images

Reconstructions

Generated Data

- The likelihood for a sequence is given as:

$$
p_{\text {model }}\left(x_{1: T} \mid \psi, \phi\right)=\prod_{t=1}^{T} p_{\phi}^{0}\left(f_{\psi}^{\mathrm{enc}}\left(x_{t}\right) \mid f_{\psi}^{\text {enc }}\left(x_{1: t-1}\right)\right) V\left(x_{t}\right)
$$

- The likelihood for a sequence is given as:

$$
p_{\text {model }}\left(x_{1: T} \mid \psi, \phi\right)=\prod_{t=1}^{T} p_{\phi}^{0}\left(f_{\psi}^{\mathrm{enc}}\left(x_{t}\right) \mid f_{\psi}^{\mathrm{enc}}\left(x_{1: t-1}\right)\right) V\left(x_{t}\right)
$$

- The algorithm: Fit an autoencoder. Then fit a sequential base distribution $p^{0}($.$) , such as an HMM or RNN.$
- The likelihood for a sequence is given as:

$$
p_{\text {model }}\left(x_{1: T} \mid \psi, \phi\right)=\prod_{t=1}^{T} p_{\phi}^{0}\left(f_{\psi}^{\mathrm{enc}}\left(x_{t}\right) \mid f_{\psi}^{\mathrm{enc}}\left(x_{1: t-1}\right)\right) V\left(x_{t}\right)
$$

- The algorithm: Fit an autoencoder. Then fit a sequential base distribution $p^{0}($.$) , such as an HMM or RNN.$
- This is a bonus that comes with this method. Not straightforward to do sequence learn with GANs and VAEs.
(top) Nearest neighbor samples to test instances (bottom) Random samples

	3484934434
	¢ 9737% \% 96.
	7\% ¢ ¢ ¢ ¢ ¢ 422
	934女2 69 4 9 5
	? 59879 90664

CELEB-A

(top) Nearest neighbor samples to test instances (bottom) Random samples

More random faces

VAE

More random faces

Wasserstein GAN

More random faces

IML

Algorithm MNIST CELEB-A

IML	143	-8318
VAE	132	-11003
GAN	-5	-11970
WGAN	64	-12986

$$
\begin{aligned}
\mathrm{KDE} \text { score } & =\frac{1}{N_{\text {test }} N_{\text {samples }}} \sum_{n=1}^{N_{\text {test }}} \sum_{m=1}^{N_{\text {samples }}} \mathcal{N}\left(x_{n}^{\text {test }} ; x_{m}^{\text {sample }}, 0.1 I\right) \\
& \approx \mathrm{KL}\left(p_{\text {data }}(x) \| p_{\text {model }}(x \mid \theta)\right)
\end{aligned}
$$

Audio

We learn a distribution over overlapping windows in the time domain.

Original Data

Contributions

- Contribution 1: We have developed a method which enables using multi-modal latent representations. (representation)

Contributions

- Contribution 1: We have developed a method which enables using multi-modal latent representations. (representation)
- Contribution 2: The method does maximum likelihood for an approximate implicit model likelihood. (learning paradigm)

Contributions

- Contribution 1: We have developed a method which enables using multi-modal latent representations. (representation)
- Contribution 2: The method does maximum likelihood for an approximate implicit model likelihood. (learning paradigm)
- Contribution 3: We have proposed an efficient algorithm for two step optimization. The algorithm is much less sensitive to hyper-parameter fine tuning, unlike GANs. (optimization)

Contributions

- Contribution 1: We have developed a method which enables using multi-modal latent representations. (representation)
- Contribution 2: The method does maximum likelihood for an approximate implicit model likelihood. (learning paradigm)
- Contribution 3: We have proposed an efficient algorithm for two step optimization. The algorithm is much less sensitive to hyper-parameter fine tuning, unlike GANs. (optimization)
- Overall, we get closer to \mathcal{M} :

Plan

```
Method of Moments framework for structured HMMs
    Method of Moments Introduction
    Two Step Estimation Framework
Factorial HMM
    Factorial HMM introduction
    Shared Component Factorial Model
    Revealing Factorial Model
Generative Models for Supervised Source Separation
    Source Separation Introduction
    Convolutional Neural Network Models for Audio
    Generative Adversarial Source Separation
Learning the base Distribution in Implicit Generative Models
    Methodology
    Results
```

Conclusions
Summary and thoughts

- The first half my PhD was focused more on optimization. My aim was to develop methods for "global" optimization.
- The first half my PhD was focused more on optimization. My aim was to develop methods for "global" optimization.
- However, I do admit these methods require simple models. I think for success in real data applications one needs realistic models. Neural networks at the moment seem to be good models for this.

Summary

- The first half my PhD was focused more on optimization. My aim was to develop methods for "global" optimization.
- However, I do admit these methods require simple models. I think for success in real data applications one needs realistic models. Neural networks at the moment seem to be good models for this.

	Representation	Learning Paradigm	Optimization
Chapter 2	N.A.	MoM learning framework for HMMs	EM initialization with the MoM framwork
Chapter 3	Identifiable FHMM alternatives	N.A.	Proposed algorithms for FHMM
Chapter 4	Multi modal latent representation with IMLs	Maximum Likelihood Learning for Implicit Models	Two-Step optimization procedure
Chapter 5	Convolutive Architectures for Audio, Diagonal RNNs*	GANs in Audio	N.A.

*Not presented today for the interest of time.

Contributions in this thesis

- A - Learning with multi-modal latent representations in implicit generative models (UAI 2018 submission - (New)
- B - Method of Moments Framework for HMMs with special structure (NIPS 2014, WASPAA 2015)
- C - Convolutional neural nets for source separation (MLSP 2017 best paper award)
- D - Diagonal RNNs in symbolic music modeling (WASPAA 2017)
- E - Identifiable Factorial HMMs (NIPS 2015, ICASSP 2017 submissions)
- F - GANs for source separation (ICASSP 2018) - (New)

Conclusions

- Some models are difficult to learn, and can use help in optimization: e.g. HMMs. Method of Moments is a good initialization scheme.

Conclusions

- Some models are difficult to learn, and can use help in optimization: e.g. HMMs. Method of Moments is a good initialization scheme.
- More agnostic models can help in generalization. (Source separation with GANs)

Conclusions

- Some models are difficult to learn, and can use help in optimization: e.g. HMMs. Method of Moments is a good initialization scheme.
- More agnostic models can help in generalization. (Source separation with GANs)
- Some models are not learnable (identifiable). In cases where we care about inference, this matters. (FHMM)

Conclusions

- Some models are difficult to learn, and can use help in optimization: e.g. HMMs. Method of Moments is a good initialization scheme.
- More agnostic models can help in generalization. (Source separation with GANs)
- Some models are not learnable (identifiable). In cases where we care about inference, this matters. (FHMM)
- My main belief after all this:
- An approximate learning algorithm for an exact model is better than an exact algorithm for an approximate model. (IML, convolutive NMF are good examples for this)

