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What is Generative Modeling, and Why?

I Learning by assuming a generative process
I E.g. fitting a multivariate Gaussian, mixture model, NMF, etc.

I Short answer to why question: Extracting structure out of data,
understanding data

I Clustering (mixture models)
I Document Analysis (LDA)
I Audio Source Separation (NMF)
I Image in-painting
I Generating random images (my favorite)
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Generative Modeling in Action

Weight and Heights of the members of an African tribe
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hn ∼ Discrete([π, 1− π])

xn|hn ∼ N (µhn ,Σhn )

Learning:

max
θ

∑
n

log p(xn|θ)
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A sequence example

Hugely popular NMF model: X = WH
(figure stolen from Paris)
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Learning distributions over sequences
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Generated with the method in Chapter 4 of this thesis.

6 / 69



Major issues when generative modeling

I Modeling/Representation
I How we represent the data (what model/distribution we use)

I Learning Paradigm
I The cost function used to measure between model distribution and

underlying data distribution (e.g. maximum likelihood, adversarial training,
method of moments)

I Optimization
I Given the model and the learning paradigm, the procedure with which we

obtain the model parameters.
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Contributions in this thesis

I A - Learning with multi-modal latent representations in implicit generative models (UAI 2018 submission - (New)

I B - Method of Moments Framework for HMMs with special structure (NIPS 2014, WASPAA 2015)

I C - Convolutional neural nets for source separation (MLSP 2017 best paper award)

I D - Diagonal RNNs in symbolic music modeling (WASPAA 2017)

I E - Identifiable Factorial HMMs (NIPS 2015, ICASSP 2017 submissions)

I F - GANs for source separation (ICASSP 2018) - (New)

Modeling

Learning P. OptimizationB

C, D

E

F

A
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Plan

Method of Moments framework for structured HMMs
Method of Moments Introduction
Two Step Estimation Framework

Factorial HMM
Factorial HMM introduction
Shared Component Factorial Model
Revealing Factorial Model

Generative Models for Supervised Source Separation
Source Separation Introduction
Convolutional Neural Network Models for Audio
Generative Adversarial Source Separation

Learning the base Distribution in Implicit Generative Models
Methodology
Results

Conclusions
Summary and thoughts
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Learning in Latent Variable Models

I Typical objective is Maximum Likelihood:

max
θ

Ex log p(x |θ)

= max
θ

Ex log
∑
h

p(x , h|θ)

I Observations: x .

I Hidden Variables: h.

I Parameters (to be optimized): θ.

I In general not convex.

I This poses a challenge in terms of optimization. In general, it is difficult to
train latent variable models. Can we devise methods to more easily reach
solutions around the global optimum?
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Method of Moments

I The idea is to estimate the models parameters θ by solving a system of
non-linear equations formed with moments E[gk(x)], k ∈ {1, . . .K}:

E[g1(x)] =f1(θ)

...

E[gK (x)] =fK (θ)

I Canonical Example: x ∼ G(a, b):

E[x ] =ab

E[x2] =ab2 + a2b2

→ b̂ =(E[x2]− E[x ]2)/E[x ]

â =E[x ]2/(E[x2]− E[x ]2)

I Can we do this for latent variable models?
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Spectral Learning of Mixture of HMMs

[MHMM, Smyth 97]

Ak r1,n r2,n . . . rTn,n

hn

Ok x1,n x2,n . . . xTn,n

k = 1 . . .K n = 1 . . .N

hn ∼ Categorical(πn)

xn ∼ HMM(An,On)

I Learning Goal: Estimate πn,An,On, given x1:N
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Global view for Mixture of HMMs

I An MHMM with local parameters θ1:K = (O1:K ,A1:K , ν1:K , π) is an HMM
with global parameters θ̄ = (Ō, Ā, ν̄), where:

Ō =
[
O1 . . . OK

]
, Ā =


A1 0 . . . 0
0 A2 . . . 0

. . .

0 0 . . . AK

 , ν̄ =


π1ν1

π2ν2

...
πKνK

 .

I Estimating the global parameters θ̄ with a moment algorithm would
introduce permutation P and noise to the estimates.

I How to impose this structural constraint on the estimator?
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Two stage estimation for HMMs

HMM-Mixture model equivalence, [Kontorovich et al., 13]

An HMM with state marginals p(ht) is equivalent to a mixture model with
mixing weights π := 1

T

∑T
t=1 p(ht), and the same emission parameters.

I First compute (estimate) Ô, and π̂.

I Then solve the convex problem:

Â = arg min
A
‖M2 − ÔAdiag(π̂)Ô‖F

s.t. 1>A = 1>,

A ≥ 0.

,

where M encodes the block diagonal structure.

I Problem: Ô is still permuted.

I But Â is de-permutable! (if we remove the block diagonal constraint)
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Two stage estimation framework with structural constraints:

Two stage estimation framework

I Get rough/permuted estimates for the parameters Ô, Â, π̂.

I De-permute A. (Solve the graph problem dictated by model)

I Solve:

min
A
‖M2 − ÔAdiag(π̂)Ô‖F

s.t. 1>A = 1>,

A ≥ 0.

f (M,A) = 0

I f , and M depend on the model.

For MHMM M is the complement of a binary block diagonal matrix.
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Mixture of HMMs: De-permutation

I lime→∞ Āe = [v̄11>M , v̄21>M , . . . , v̄K1>M ], where v̄k is the k ′th eigenvector
of Ā.
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I lime→∞ Āe = [v̄11>M , v̄21>M , . . . , v̄K1>M ], where v̄k is the k ′th eigenvector
of Ā.
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MHMM De-permutation Continued

I But we can estimate the number of HMMs:
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I Then form rank-K̂ reconstruction Ar :

Ar = V1:K̂Λ1:K̂V
−1

I Then Cluster. (A La Spectral Clustering)
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Experimental Results on Clustering Handwritten Digits

I Experiment: Clustering handwritten digit trajectories by learning
MHMMs.

I We form datasets composed of digits 1-2, 1-3, 2-3, and so on.

Algorithm 1v2 1v3 1v4 1v5 2v3 2v4 2v5

Spectral 100 70 54 55 83 99 99
EM init. at Random 96 99 98 54 83 100 100

EM init. w/ Spectral 100 99 100 100 96 100 100

Numbers show percent clustering accuracies.

I Initializing EM with the spectral algorithm boosts the results.
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Generalization
Mixture of HMMs
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Bakis-HMM

I Is an HMM that can only move one state at a time.

I A =


1 0 . . . 0 0
1 1 . . . 0 0

0 . . .
. . . . . . 0

0 . . . 1 1 0
0 . . . 0 1 1


I Every state is visited exactly once.

I Depermutation: Find a maximum weight Hamiltonian circuit on Â.
(Traveling Salesman problem)

ATG TGG GGC

GCGCGTGTGTGCGCA

CAA AAT
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Experimental Results on Speech Onset Detection

Speech onset detection:
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I Triangles denote randomly initialized EM performance on run-time vs
f-measure. (EM is implemented in C)

I Numbers show spectral + number of EM iterations.

I Spectral Algorithm accelerates EM learning.
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Contribution and summary

I Contribution: A method of moments based framework for HMMs with
special transition structure. (learning paradigm)

I Helps in initializing EM. (optimization)

Thoughts on method of moments:
I Good:

I Global
I Initialization: No need to worry about initialization (Great initializer for

EM (optimization)).
I Scalable: Computationally cheap: Gather the moments, factorize a small

matrix.
I Interesting/Theoretical: Bounds.

I Bad:
I Model Mismatch: Horrible in regards to model mismatch. (Hard

assumption on model Unlike ML, which minimizes KL(p‖q).

I Ugly:
I You can get complex numbers for parameter estimates/likelihoods.
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Factorial HMM

[Ghahramani, Jordan; 97]

r1
1 r1

2
. . . r1

T

x1 x2 . . . xT

r2
1 r2

2
. . . r2

T

r 1
t |r 1

t−1 ∼ Cat(A1r 1
t−1)

...

rKt |rKt−1 ∼ Cat(AK rKt−1)

xt |r 1
t , . . . , r

K
t ∼ N ([O1, . . . ,OK ]

 r 1
t

. . .

rKt

 , σ2I )
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x1 x2 . . . xT

r2
1 r2
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T

r 1
t |r 1

t−1 ∼ Cat(A1r 1
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...

rKt |rKt−1 ∼ Cat(AK rKt−1)

xt |r 1
t , . . . , r

K
t ∼ N ([O1, . . . ,OK ]

 r 1
t

. . .

rKt

 , σ2I )

X = O︸︷︷︸
The dictionary

R︸︷︷︸
Activations

+ ε︸︷︷︸
noise
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Some Dictionary Learning Perspective..

I General Dictionary Learning

min
O,R
‖X − O︸︷︷︸

Dictionary

R︸︷︷︸
Activations

‖F

I PCA: Both O and R are orthogonal.
I ICA: Solvable if R has independent coordinates.
I Mixture Model: R is one sparse. Solvable is O has full column rank.
I Sparse Dictionary Learning: Solvable if O is square and R is sparse

Bernouilli-Gaussian. [Spielman et al. 12]

I Factorial Models:

O =
[
O1 . . . OK

]
, R =

R
1

...
RK


I No constraint on O, columns of R are block-K sparse.
I No Unique Solution!!!

25 / 69



Some Dictionary Learning Perspective..

I General Dictionary Learning

min
O,R
‖X − O︸︷︷︸

Dictionary

R︸︷︷︸
Activations

‖F

I PCA: Both O and R are orthogonal.
I ICA: Solvable if R has independent coordinates.
I Mixture Model: R is one sparse. Solvable is O has full column rank.
I Sparse Dictionary Learning: Solvable if O is square and R is sparse

Bernouilli-Gaussian. [Spielman et al. 12]

I Factorial Models:

O =
[
O1 . . . OK

]
, R =

R
1

...
RK


I No constraint on O, columns of R are block-K sparse.
I No Unique Solution!!!

25 / 69



FHMM Identifiability

Rank Deficiency

rank(R) ≤ MK − (K − 1)

Proof Sketch:
dim(null(R>)) ≥ K − 1.

Therefore from rank-nullity theorem rank(R) ≤ MK − (K − 1).

FHMM is unidentifiable

For a given assignment matrix R ∈ RKM×T There exists O1 6= O2 such that∏
t N (xt |O1R, σ

2I ) =
∏

t N (xt |O2R, σ
2I ).

Proof: Since dim(null(R>)) ≥ K − 1, (O1 − O2)R = 0, for O1 6= O2.
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FHMM Identifiable Alternative 1

Shared Component FM

∀k, Ok =

µ1
k µk

2 . . . µk
M−1 s


SC-FM is identifiable

Given an assignment matrix R̃ which is rank MK − (K − 1), the emission
matrix of an SC-FM is identifiable.

Proof Sketch:
dim(null(R>)) = 0.

Therefore (O1 − O2)R 6= 0, ∀ O1 6= O2.
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Learning Example for Shared Component Factorial Model

I Gist: If the shared component s is incoherent, then we can identify it, and
reveal the other components.

Example Observations

Obtained Components with SC-FM

Components with regular model-EM

I The shared component + incoherence assumption a bit too restrictive.
Can we think of another model?
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FHMM Identifiable Alternative 2

skt ∼ Bernoulli(π), k ∈ {1, . . . ,K}

r 1
t |r 1

t−1 ∼ s1
t Cat(A1r 1

t−1)

...

rKt |rKt−1 ∼ sKt Cat(AK rKt−1)

xt |r 1
t , . . . , r

K
t ∼ N ([O1, . . . ,OK ]

 r 1
t

. . .

rKt

 , σ2I )

s1
1 s1

2
. . . s1

T

r1
1 r1

2
. . . r1

T

x1 x2 . . . xT

r2
1 r2

2
. . . r2

T

s2
1 s2

2
. . . s2

T

I Identifiability follows similarly from the activation matrix R.
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Revealing FHMM Practical Algorithm

Practical Algorithm for Revealing FHMM

I Cluster the data matrix X ∈ RL×T into clusters X c ∈ RL×C .

I Solve:

min
H
‖X c − X cH‖2

F + β‖H‖1,

s.t. Hi,i = 0, for 1 ≤ i ≤ C ,

H ≥ 0,

where H ∈ RC×C .

I Construct a bi-partite graph by reading the solution for H.

I Condition for learnability: Let O1 = [x0, x1], O2 = [y0, y1]. Observed
combinations needs to form a connected graph (Connectivity), and we
need to observe all nodes and edges (Observability).
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Unsupervised audio source separation example

I We mixed recording of double bass and flute (at 0dB).

I The observed mixtures satisfy the connectivity constraint.

Original Mixture Reconstruction

True Source 1 Estimated Source 1

True Source 2 Estimated Source 2

I We obtain almost perfect source separation.
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Sensitivity on number of clusters

5 10 15 20 25 30 35 40 45 50

Number of clusters C

0

5

10
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20
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30

d
B

SIR

SDR

SAR

I The algorithm is robust to the choice of number of clusters C .
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Contributions and thoughts

I Contribution 1: We have shown that the standard Factorial Model is not
statistically identifiable. (modeling)

I Contribution 2: We have proposed two identifiable alternatives, along
with practical parameter estimation algorithms. (modeling and
optimization)

I Future work:
I Can we relax the observability assumption so that we only require to

observe less nodes in the connectivity graph?
I Potential application in semi-supervised source separation.
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Source Separation
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Generative Supervised Source Separation

I Assumes the following generative model:

s1 ∼ pout(s1|fθ1 (h1))

s2 ∼ pout(s2|f 2
θ2 (h2))

x ∼ pout(x |s1 + s2)

I First train the generative models for each source (with Maximum
Likelihood):

max
θk

Eskp(sk |fθk (hk)),

where hk = f enc
θk (sk), is some encoding.
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Generative Supervised Source Separation

In test time, the source estimates are obtained via:

ĥ1, ĥ2 = arg max
h1,h2

p(x |fθ1 (h1) + fθ2 (h2))
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Separation Example

I Separation is usually done on spectrograms.

I Because of non-negativity, we usually use p(X |fθ(H)) = PO(X ; fθ(H))
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Popular Linear Models for Supervised Source Separation

I Non-Negative Matrix Factorization (NMF) [Smaragdis 2003]

fθ(H) = WH, W ≥ 0,H ≥ 0

Only, the forward model fθ(H) is specified, H is obtained with an
algorithm.

I Convolutive NMF [Smaragdis 2004]

fθ(H) =
K∑

k=0

Wk ∗ Hk , W ≥ 0,H ≥ 0

I Linear mappings allow adaptive step-size optimization algorithms such as
EM, multiplicative update rules (even globally optimal methods such as
method of moments). However representation wise, they are limited.

I Rest of the thesis will utilize generative models which employ more general
non-linear mappings. (neural networks)
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More general mappings

I Neural Network Alternative for NMF [Smaragdis, Venkataramani, 2016]

fθ(X ) =σ(WH(X ))

=σ(Wf enc
θ (X ))

=σ(Wσ(W encX ))

where f enc
θ (X ) is the encoder, and it is learned.

I Convolutive neural-net alternative?
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Convolutive Neural Network Alternative

I Neural Network Alternatives for Convolutive NMF [Best student paper
award, MLSP 2017]

fθ(H(X )) =σ

(
K∑

k=0

Wk ∗ Hk(X )

)
,

where Hk(X ) = σ
(∑

j(W
inv
k ∗ X )j

)

I We can also try RNNs to model arbitrarily long dependencies.
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Using RNNs in the Encoder

I RNNs in the encoder:

Hk(X ) = σ

(∑
j

(RNNk(X ))j

)
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Experimental Set-up

I Dataset: Male-female speaker mixtures from TIMIT dataset.
I Training set: 9 utterances for each speaker.
I Test set: Single sentence mixture at 0dB.
I Evaluated for 25 pairs of speakers.

I Evaluation: BSS eval metrics. (SIR, SAR, SDR)

I We compare Feedforward-Feedforward, Convolutive-Convolutive,
Recurrent-Convolutive Autoencoders.
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Some results
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I Conv-Conv, Conv-RNN, FF-FF autoencoders.
I Variance is over the speaker pairs.
I Significant SIR improvement with Convolutive Models.
I Recursive encoder model is better than the baseline, but not as good as

the convolutive model.
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Generative Adversarial Source Separation

I Maximum likelihood training requires specifying pout(.)/loss function.

I Instead of hand picking pout(.), we can use adversarial training.

ML objective

max
θk

Eskpout(sk |fθk (hk)),

Adversarial training objective

min
ξ

max
θk

Esk logDξk (sk) + Ehk log(1− Dξk (fθk (hk)))

I Define the likelihood via a classifier D(.).

I In testing we can use the classifier:

max
h1,h2

pout(x |fθ1 (h1) + fθ2 (h2)) + λ

(
2∑

k=1

Dξk (fθk (hk))

)
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Generative Adversarial Source Separation
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Results

I Dataset: Male-female speaker mixtures from TIMIT dataset.
I Training set: 9 utterances for each speaker.
I Test set: Single sentence mixture at 0dB.
I Evaluated for 25 pairs of speakers.

I Evaluation: BSS eval metrics. (SIR, SAR, SDR)

I We compare NMF, Variational Autoencoders, Denoising Autoencoder,
GAN, and Wasserstein GAN, all with a multilayer perceptron architecture.
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Contributions

I Contribution 1: We developed a neural network model which is an analog
of convolutive NMF, both with convolutional and recurrent neural network
architectures. (representation)

I Contribution 2: We showed that GANs worked better than maximum
likelihood based methods on a speech source separation task.

I This is potentially because GANs are more agnostic to output noise.
(learning paradigm)
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VAEs and GANs

hn

xn

n = 1 . . .N

VAEs:

h ∼ N (0, I )

x |h ∼ N (fθ(h), σ2I )

GANs:

h ∼ N (0, I )

x |h = fθ(h)

I VAEs and GANs are very popular methods for generative model learning.

I VAE is learned by gradient descent optimizing a lower bound to likelihood.

I GAN model is an implicit generative model. It is learned by using an
auxiliary “discriminator” network. Optimization is very very tricky.

I A big problem for both: They try to map a simplistic distribution such as
isotropic Gaussian to the whole set of observations.
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Implicit Maximum Likelihood

I This is what we do. Why? - Allows complicated base distributions.
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Maximum Likelihood for Implicit Generative Model

I Implicit Generative Models:

h ∼ p0
φ(h), x = fθ(h)

where, p0
φ(h) is the base distribution and fθ(h) is some forward mapping.

I The likelihood is given by,

pmodel(x |θ, φ) = p0
φ(f −1

θ (x))Vθ(x)

where Vθ(x) :=

∣∣∣∣det
∂f−1
θ

(x)

∂x

∣∣∣∣ =
∣∣∣det ∂fθ(h)

∂h

∣∣∣−1

, which measures the volume

change due to the transformation.

I Main problem: This requires a square transformation. No good for high
dimensional structured data.

I Also joint optimization is difficult. (Joint in θ and φ)
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IML with general mappings

Consider an autoencoder such that fθ(f enc
ψ (x)) ≈ x .

-Train the auto-encoder parameters θ, ψ such that:

min
θ,ψ

∑
n

‖fθ(f enc
ψ (xn))− xn‖

-Fit the base distribution on the latent space such that:

max
φ

∑
n

log p0
φ(f encψ (xn))

This is approximately maximum likelihood:

= max
φ

∑
n

log p0
φ(f encψ (xn)) + logV (xn)

Base distribution parameters are independent from the volume term.
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Demonstrate the algorithm

Training Images Reconstructions

Generated Data
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Distributions over sequential data

I The likelihood for a sequence is given as:

pmodel(x1:T |ψ, φ) =
T∏
t=1

p0
φ(f enc

ψ (xt)|f enc
ψ (x1:t−1))V (xt),

I The algorithm: Fit an autoencoder. Then fit a sequential base distribution
p0(.), such as an HMM or RNN.

I This is a bonus that comes with this method. Not straightforward to do
sequence learn with GANs and VAEs.
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MNIST

(top) Nearest neighbor samples to test instances (bottom) Random samples

Test

IMPL

VAE

GAN_W

GAN

GAN VAE IML
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CELEB-A

(top) Nearest neighbor samples to test instances (bottom) Random samples

Test

IML

VAE

GAN

WGAN

GAN VAE IML
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More random faces

VAE
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More random faces

GAN
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More random faces

Wasserstein GAN
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More random faces

IML
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KDE Scores

Algorithm MNIST CELEB-A

IML 143 -8318
VAE 132 -11003
GAN -5 -11970
WGAN 64 -12986

KDE score =
1

NtestNsamples

Ntest∑
n=1

Nsamples∑
m=1

N (x test
n ; x sample

m , 0.1I ).

≈KL(pdata(x)‖pmodel(x |θ))

63 / 69



Audio

We learn a distribution over overlapping windows in the time domain.
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Contributions

I Contribution 1: We have developed a method which enables using
multi-modal latent representations. (representation)

I Contribution 2: The method does maximum likelihood for an
approximate implicit model likelihood. (learning paradigm)

I Contribution 3: We have proposed an efficient algorithm for two step
optimization. The algorithm is much less sensitive to hyper-parameter fine
tuning, unlike GANs. (optimization)

I Overall, we get closer to M:

-
model complexity

6

d(pdata(x)‖pmodel(x|θ))

MVAE
GAN

IML
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Plan

Method of Moments framework for structured HMMs
Method of Moments Introduction
Two Step Estimation Framework

Factorial HMM
Factorial HMM introduction
Shared Component Factorial Model
Revealing Factorial Model

Generative Models for Supervised Source Separation
Source Separation Introduction
Convolutional Neural Network Models for Audio
Generative Adversarial Source Separation

Learning the base Distribution in Implicit Generative Models
Methodology
Results

Conclusions
Summary and thoughts
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Summary

I The first half my PhD was focused more on optimization. My aim was to
develop methods for “global” optimization.

I However, I do admit these methods require simple models. I think for
success in real data applications one needs realistic models. Neural
networks at the moment seem to be good models for this.
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success in real data applications one needs realistic models. Neural
networks at the moment seem to be good models for this.

Representation Learning Paradigm Optimization

Chapter 2 N.A. MoM learning
framework for HMMs

EM initialization
with the MoM framwork

Chapter 3 Identifiable FHMM alternatives N.A. Proposed algorithms
for FHMM

Chapter 4 Multi modal latent
representation with IMLs

Maximum Likelihood Learning
for Implicit Models

Two-Step
optimization procedure

Chapter 5 Convolutive Architectures for Audio,
Diagonal RNNs∗

GANs in Audio N.A.

∗Not presented today for the interest of time.
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Contributions in this thesis

I A - Learning with multi-modal latent representations in implicit generative models (UAI 2018 submission - (New)

I B - Method of Moments Framework for HMMs with special structure (NIPS 2014, WASPAA 2015)

I C - Convolutional neural nets for source separation (MLSP 2017 best paper award)

I D - Diagonal RNNs in symbolic music modeling (WASPAA 2017)

I E - Identifiable Factorial HMMs (NIPS 2015, ICASSP 2017 submissions)

I F - GANs for source separation (ICASSP 2018) - (New)

Modeling

Learning P. OptimizationB

C, D

E

F

A
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Conclusions

I Some models are difficult to learn, and can use help in optimization: e.g.
HMMs. Method of Moments is a good initialization scheme.

I More agnostic models can help in generalization. (Source separation with
GANs)

I Some models are not learnable (identifiable). In cases where we care about
inference, this matters. (FHMM)

I My main belief after all this:
I An approximate learning algorithm for an exact model is better than an

exact algorithm for an approximate model. (IML, convolutive NMF are
good examples for this)
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