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Abstract

In this paper, we develop two spectral methods for mixture of Markov models.
First, we show that to derive spectral learning algorithm for a mixture of Markov
models, we need to use moments up to order five. To reduce the sample complex-
ity, we propose an alternative scheme, which is based on learning a mixture of
Dirichlet distributions. We experimentally show that the latter approach outper-
forms the regular spectral learning algorithm for mixture of Markov models, and
expectation maximization algorithms for mixture of Markov and Dirichlet models.

1 Introduction

Spectral learning methods have recently become popular in machine learning community due to their
ability to learn latent variable models in computationally efficient and local optima-free fashion. The
prominent examples include spectral learning for such cases as, inference in Hidden Markov Models
[1], inference in arbitrary latent trees and latent junction trees [2, 3], parameter estimation in mixture
models and Hidden Markov Models [4, 5].

While deriving a spectral learning algorithm for mixture of Markov models following this method-
ology, we found that the direct application of the approach in [4] necessitates to use observable
moments of up to order five. To overcome this drawback, we propose an alternative scheme where
we consider the posterior distribution of the model parameters: In the mixture of Markov models
case, if we assume a uniform Dirichlet prior, the posterior distribution of the transition matrices
becomes a Dirichlet distribution with empirical transition counts as parameters. So, we can treat a
normalized sufficient statistics matrix of a sequence as a sample from this Dirichlet posterior and,
learn a mixture of Dirichlet distributions for clustering sequences.

Experiments on synthetic data show that spectral learning of mixture of Dirichlet distributions out-
performs the conventional spectral learning approach and expectation maximization algorithms on
mixture of Markov and mixture of Dirichlet models.

2 Learning Mixture of Markov Models

A mixture of Markov models is defined by {A1:K , π} where Ak is the L × L transition probabil-
ities matrix for the kth Markov model and π is the vector of mixing proportions. The initial state
distributions are omitted for the sake of simplicity.

The likelihood of observing a sequence xn = (x1,n, x2,n, . . . , xTn,n) of length Tn is defined as:

p(xn|A1:K) =

K∑
k=1

p(hn = k)

Tn∏
t=1

p(xt,n|xt−1,n, hn = k) =

K∑
k=1

πk

Tn∏
t=1

L∏
l1=1

L∏
l2=1

A
[xt,n=l1][xt−1,n=l2]
k,l1,l2

(1)
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where, hn ∈ {1, 2, . . . ,K} is the latent cluster indicator of the sequence xn. Given N observation
sequences x1:N = {x1,x2, . . . ,xN}, to estimate the model parameters A1:K , one can maximize
the likelihood:

A∗1:K = argmaxA1:K
p(x1:N |A1:K) = argmaxA1:K

∑
h1:N

N∏
n=1

p(xn|hn, A1:K) (2)

which is intractable since the likelihood is defined with a summation over all possible combinations
of h1:N . The conventional way is to iteratively maximize an EM lower bound.

Q(Aold1:K , A
new
1:K ) =Ep(h1:N |x1:N ,Aold

1:K)[log(p(x1:N , h1:N |Anew1:K ))] (3)

However, this approach requires clever initialization for A1:K as the optimization problem does not
have unique solution. Alternatively a method of moments based learning algorithm for mixture
of Markov models can be derived following the methodology in [4]. The trick is to express the
moments of the distribution as a matrix multiplication (or possibly tensor as in our case), so that an
eigen-decomposition can be applied. The latter reveals information about the model parameters, and
they can be obtained using a function of some observable moments.

Directly applying this approach would require the usage of a fifth order observable moments. (Due
to space constraint we do not include the derivation1 in the paper.) Although the algorithm is the-
oretically sane, obviously in practice accurate estimation of fifth order moments requires excessive
data. In the next section, we propose an alternative scheme, based on learning mixture of Dirichlet
distributions which enables us to reduce the sample complexity.

3 Learning Mixture of Dirichlet Distributions

Suppose we place a prior distribution for transition matrices on the class conditional likelihood
p(xn|Ahn

, hn). Placing a Dirichlet prior p(Ahn
) ∼ Dirichlet(β, . . . , β) would result in a Dirichlet

posterior:

p(Ahn
|xn, hn) ∝ p(xn|Ahn

, hn)p(Ahn
) (4)

∝

(
Tn∏
t=1

L∏
l1=1

L∏
l2=1

A
[xt,n=l1][xt−1,n=l2]
hn,l1,l2

)
L∏

l1=1

L∏
l2=1

Aβ−1hn,l1,l2
∝

L∏
l1=1

L∏
l2=1

A
cnl1,l2

+β−1
hn,l1,l2

= Dirichlet(cn1,1 + β − 1, cn1,2 + β − 1, . . . , cnL,L + β − 1)

where, cnl1,l2 stores the state transition counts of sequence xn. So, we can indeed characterize a
sequence generated by a Markov model with a Dirichlet distribution, since Dirichlet distribution
is the posterior of the transition matrix Ahn . Setting β = 1 (having a uniform prior), we see that
the posterior distribution becomes; p(Ahn |xn, hn) = Dirichlet(cn1,1, c

n
1,2, . . . , c

n
L,L). Therefore, we

can treat a normalized state transition count matrix as a sample from the posterior of the transition
matrix. Hence, we can effectively cluster sequences by using normalized second order statistics
matrices instead of the sequences themselves. This would be equivalent to learning a mixture of
Dirichlet distributions, instead of learning a mixture of Markov models.

A spectral learning algorithm for a mixture of Dirichlet distributions would be simpler compared to
directly learning a mixture of Markov models, since the former requires to estimate a second order
moment (normalized transition count matrix) whereas the latter requires a fifth order moment from
the sequences. Let us denote an observed normalized state transition count (vectorized) matrix by
sn ∈ R(L2)×1. Note that sn,l1,l2 = cnl1,l2/(

∑
l1,l2

cnl1,l2). In mixture of Dirichlet distributions, the
likelihood of an observation sn is defined as follows:

p(sn|α) =
K∑
k=1

p(hn = k)Dirichlet(sn;αk) (5)

where, α ∈ R(L2)×K is the matrix that stores the Dirichlet parameters in its columns, and αk is the
k’th column of α. The empirical moments and the parameters are connected through the following

1The derivation can be found from http://mazeofamazement.files.wordpress.com/2010/08/mmarkovsupplement1.pdf
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equations2:

m := E[s]; tl ∈ RL
2

, tli := E[s2i ]−
1

α0 + 1
E[si] if i = l, tli := E[slsi] if i 6= l

M2 := E[s⊗ s]− 1

α0 + 1
diag(m)

M3 := E[s⊗ s⊗ s]− 1

α0 + 2

 L2∑
l=1

(el ⊗ el ⊗ tl) + (el ⊗ tl ⊗ el) + (tl ⊗ el ⊗ el)


− 2

(α0 + 1)(α0 + 2)

 L2∑
l=1

ml(el ⊗ el ⊗ el)


then,

M2 =
1

α0(α0 + 1)

K∑
k=1

πk (αk ⊗ αk) , M3 =
1

α0(α0 + 1)(α0 + 2)

K∑
k=1

πk (αk ⊗ αk ⊗ αk)

where, α0 =
∑K
k=1 αk, e1:L2 is the canonical basis for RL2

, and ⊗ is the outer product. Then, the
model parameters can be estimated (up to a scaling factor) using eigenvalue decomposition as in [4]
or by orthogonal tensor decomposition in [5]. Note that we have assumed that precision parameter
is known a-priori and shared in all clusters. The overall procedure is given in Algorithm 1.

Algorithm 1 Sequence clustering via spectral learning of mixture of Dirichlet distributions.

Input: Sequences x1:N

Output: Clustering assignments ĥ1:N
1. Extract normalized transition counts s1:N from x1:N .
2. Compute M2 and M3.
3. Estimate α̂ (up to a scaling factor) via spectral learning.
4. Output the cluster assignments ĥn = argmaxkDirichlet(sn, α̂k), ∀n ∈ {1, . . . N}.

4 Experimental Results

We generated 100 data sets where each set is composed of 60 sequences which are generated from
a mixture of 3 Markov models. For each data set, the prior cluster probabilities p(hn) and transition
matrices A1:3 are generated randomly.

We compare the clustering accuracies of the spectral learning algorithms in sections 2 and 3 and the
EM algorithms for mixture of Markov models and mixture of Dirichlet models. We define the clus-
tering accuracy as the ratio of correct clustering assignments, which is calculated via resolving the
permutation ambiguity of the clustering result: The estimated clustering assignments are compared
with the true assignments for all possible permutations of cluster identifiers (K! permutations for K
clusters), and the maximum ratio is chosen.

In the experimental setting, each sequence has a length of 100000 time instances. In order to see the
effect of the number of data instances on clustering accuracy, we redo the experiment for varying
sequence lengths. The results are shown in Figure 1. (We redo the experiment by having a sequence
dataset comprising of sequences of length shown on the x-axis.)

We see that mixture of Dirichlet distributions yield the highest clustering accuracies for all sequence
lengths. Also, we observe that when we have large number of samples, spectral algorithms tend to
give higher clustering accuracies compared to their EM counterparts. In the next set of experiments,
we investigate the effect of changing L (cardinality of observations) and cluster similarity on clus-
tering accuracy. In cluster similarity experiment, for K = 3, the transition matrices are generated as
Ak = (1 − λ)Ã0 + λÃk, where Ã0, Ã1, Ã2, Ã3 ∼ Dirichlet(1,. . . ,1). We repeat both experiments
for multiple datasets, and report the average clustering accuracy. The results for both experiments,
for differing sequence lengths are given in Figure 2.

2The derivation can be found from http://mazeofamazement.files.wordpress.com/2010/08/mmarkovsupplement1.pdf
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Figure 1: Comparison of clustering accuracies on synthetic data for differing sequence lengths
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(a) Effect of changing L experiment
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(b) Effect of cluster similarity experiment

Figure 2: Comparison of clustering accuracies on synthetic data for differing sequence lengths

We observe that number of states L has the least significant effect on spectral mixture of Dirichlet
algorithm, amongst all algorithms. In experiments with short sequences, we see that the spectral
learning for mixture of Markov models is the most sensitive algorithm to increasing L. As expected,
we also see that all algorithms become less sensitive to L as sequence length increases. In clus-
ter similarity experiment, we observe that if there is enough data available, mixture of Dirichlet
algorithm yields high accuracy, even when λ = 0.1.

5 Conclusion and Future Work

We have proposed a simple, fast and high performance spectral learning algorithm for clustering se-
quences. Our approach helps to reduce the sample complexity of the spectral learning algorithm as
we have experimentally showed that our approach outperforms regular spectral learning of mixture
of Markov models on all sample rates. Furthermore, our algorithm outperforms expectation maxi-
mization algorithms for mixture of Markov models and mixture of Dirichlet distributions. As future
work, we may investigate a similar procedure which is based on learning the posterior distribution of
parameters for deriving method of moments based learning algorithms for more sophisticated latent
variable models with temporally connected observations.
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