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Spectral Learning of Hidden Markov Models with Group Persistence

Abstract
In this paper, we develop a general Method
of Moments (MoM) based parameter estimation
framework for Switching Hidden Markov Model
(SHMM) variants. The main obstacle for deriv-
ing a straightforward MoM algorithm for these
models is the inherent permutation ambiguity
in the parameter estimation, which causes the
parameters of individual HMM groups to get
mixed. We show that, as long as a global tran-
sition matrix has a group persistence property,
it is possible to isolate the group parameters us-
ing a spectral de-permutation approach. We also
provide a noise bound on the eigenvalues of the
recovered transition matrix. We do experiments
on synthetic data which shows the accuracy and
the computational advantage of the proposed ap-
proach. We also perform a segmentation experi-
ment on saxophone note sequences.

1. Introduction
Method of moments (MoM) based learning algorithms
have been popular in machine learning community due to
their computational advantages and uniqueness guarantees
for parameter learning in latent variable models (LVMs). In
the original line of work (Anandkumar et al., 2012b;a; Hsu
& Kakade, 2013), the parameter learning is only applicable
to few basic models such as mixture models and HMMs,
and it is unclear as to how to derive a MoM algorithm for
more complicated models.

Recently in (Subakan et al., 2014), a MoM algorithm
for Mixture of Hidden Markov Models (Smyth, 1997)
(MHMM) is proposed. The main idea is to reduce the
MHMM learning to an HMM learning with a larger state
space, since it can be easily seen that an MHMM is an
HMM with a larger state space which has a block diagonal
transition matrix. Therefore, it is possible to use a MoM
based HMM learning procedure to estimate the model pa-
rameters up to a permutation ambiguity, which is a funda-
mental nuisance for MHMM learning since it causes the

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

parameters of the individual clusters to get mixed. How-
ever, due to the extreme block-diagonal nature of the tran-
sition matrix it is possible to de-permute to recover a block
diagonal structure, given that the noise from the parameter
estimation step is not too strong (Subakan et al., 2014).

In this paper, we extend the de-permutation idea introduced
in (Subakan et al., 2014) to a more general class of HMMs
which does not necessarily have a complete block-diagonal
transition matrix. Group persistence is defined as the ten-
dency of a Markov chain to stay within a subset of states,
rather than switching to another subset. We show that as
long as a global transition matrix possesses a group persis-
tence property (or anti group persistence), it is possible to
de-permute it.

We use the switching HMM (SHMM) (Murphy, 2002) as
the most general case, since it is possible to adjust the level
of group persistence with a group transition matrix. Also,
by setting certain parameters of the SHMM, it is possible
to obtain useful models used in practice such as an HMM
with mixture observations (Rabiner, 1989) or MHMM.

In this paper, we also propose a methodology to exactly re-
cover the specific structure of the transition matrix. Once
the permutation mapping is estimated, since we recover the
emission and transition matrices separately as proposed in
(Chaganty & Liang, 2014), we are able to formulate a con-
vex optimization problem with constraints that enforce a
specific transition matrix structure.

The organization of the paper is as follows: In Section 2,
we give the definitions of the models used in the paper. In
Section 3 we describe the specifics of the learning proce-
dure. In Section 4 we provide experiments on synthetic
and real data.

2. The Setup
2.1. On Notation

Throughout the paper, we use the MATLAB notation
A(:, i), which takes the i’th column of a matrix A. We
do not use boldface to distinguish between matrices and
scalars, since it should be clear from the context. 1M ∈
RM denotes an all-ones vector of length M . We use sub-
scripts to denote matrix blocks: Ai,j denotes the (i, j)’th
block taken from the A matrix. Ai,j(k, l) denotes the
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(k, l)’th entry of block (i, j). We use the ⊗ symbol to
denote outer product such that, (a ⊗ b)ij = aibj (unless
otherwise noted).

2.2. Hidden Markov Model

The generative model of an Hidden Markov Model (HMM)
is defined as follows:

r1 ∼ D(ν),

rt|rt−1 ∼ D(A(:, rt−1)), ∀t ∈ {2, . . . , T}
xt|rt ∼ p(xt|rt), ∀t ∈ {1, . . . , T},

where D(ν) denotes a discrete distribution with weights ν.
The HMM is parametrized by θ = (O,A, ν), which are
respectively the emission matrix, transition matrix, and the
initial state distribution. An observation sequence is de-
noted with x1:T = {x1, x2, . . . , xT }, and each observation
xt ∈ RL is generated from the emission density p(xt|rt),
which is parametrized by the emission matrix O ∈ RL×M .
The columns of the emission matrix corresponds to the pa-
rameters of the emission distribution. E.g., in the discrete
case, the columns correspond to the emission probability
of the symbols, or in the spherical fixed variance Gaussian
case the columns correspond the means of the Gaussians in
each dimension.

Latent states r1:T form a Markov chain with the transition
matrix A ∈ RM×M , and the initial state distribution ν ∈
RM . Finally note that the HMM full joint distribution is
defined as follows:

p(x1:T , r1:T ) =p(r1)

T∏
t=2

p(xt|rt)p(rt|rt−1). (1)

2.3. The general case: Switching HMM

We use the Switching State Space HMM (SHMM) (Mur-
phy, 2002) as the general case from which we derive the
other models as special cases. It is parametrized by param-
eters θ1:K = (O1:K , A1:K,1:K , ν1:K , B, π). The generative
model is specified as follows,

h1 ∼ D(π), r1|h1 ∼ D(νh1),

ht|ht−1 ∼ D(B(:, ht−1)) ∀t ∈ {2, . . . T},
rt|rt−1, ht, ht−1 ∼ [ht = ht−1]D(Aht,ht(:, rt−1)) + . . .

. . . [ht 6= ht−1]D(Aht−1,ht(:, rt−1)) ∀t ∈ {2, . . . T},
xt|ht, rt ∼ p(xt|ht, rt),

where, D(π) denotes a discrete distribution with weights
specified in the π vector, ht ∈ {1, . . . ,K} is the latent
regime indicator, and rt ∈ {1, . . . ,M} is the latent state
indicator. Model parameters are as follows: B ∈ RK×K
is the regime transition matrix, and Aht,ht−1

∈ RM×M is
the state transition matrix which corresponds to the regime

indicators ht, ht−1. If ht = ht−1, then the intra-regime
transition matrix Aht,ht

is used and if ht 6= ht−1, then
the inter-regime transition matrix Aht−1,ht

is used. Finally,
π ∈ RK is the initial regime distribution and νh1

∈ RM is
the initial state distribution which corresponds to the initial
regime h1.

2.3.1. SPECIAL CASES

By setting certain parameters of the SHMM we can obtain
several models which are useful in practice. The graphical
models of these models are given in Table 1.

HMM with a Mixture Observation Model:
For Ai,j = νi1

>
M , ∀ (i, j), SHMM reduces to an HMM

with a mixture observation model (HMM-M) (Murphy,
2002; Rabiner, 1989).

Mixture of HMMs:
For B = I , and Ai,j = 0 for i 6= j, SHMM reduces to an
MHMM (Smyth, 1997).

Mixture of Mixtures:
For B = I , Ai,j = 0, ∀ i 6= j, and Ai,i = νi1

>
M ,

SHMM reduces to a Mixture of Mixtures (MM). Note that
in this model a sequence is generated using a single mixture
model.

Uniform Transition Switching HMM: (USHMM)
For Ai,j = 1

M 1M1>M , ∀ i 6= j, we get a practical switch-
ing HMM with uniform transitions when a regime change
occurs. We use this SHMM in the experiment in Section
4.1.

Note: MHMM and MM are sequence clustering models,
and therefore we observe more than one sequence. SHMM
and HMM-M are sequence segmentation models and they
are typically used to segment a single sequence.

2.4. Global HMM Interpretation

Lemma 1: Let θ1:K = (O1:K , A1:K,1:K , ν1:K , B, π) be
the parameters describing a general HMM with local com-
ponents. The general HMM is equivalent to a standard
HMM with global parameters θ = (O,A, ν), where

O =
[
O1 O2 . . . OK

]
, (2)

ν =
[
π1ν
>
1 π2ν

>
2 . . . πKν

>
K

]>
,

A =


B1,1A1,1 B1,2A1,2 . . . B1,KA1,K

B2,1A2,1 B2,2A2,2 . . . B2,KA2,K

. . .
BK,1AK,1 BK,2AK,2 . . . BK,KAK,K

 ,

where O ∈ RL×(MK), A ∈ RMK×MK , and ν ∈ RMK×1.

Proof:
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Table 1. Directed Graphs of HMMs in Section 2.3.1

Mixture of Mixtures Mixture of HMMs

hn

rnt

xnt

1, . . . , T1, . . . , N

hn

rn1 rn2 . . . rnT

xn1 xn2 . . . xnT

n = 1 . . . N

Hidden Markov Model with Mixture Observations Switching HMM

h1 h2 . . . hT

r1 r2 . . . rT

x1 x2 . . . xT

h1 h2 . . . hT

r1 r2 . . . rT

x1 x2 . . . xT

The full joint distribution for SHMM is defined as follows:

p(x1:T , r1:T , h1:T )

=p(r1|h1)p(h1)

T∏
t=1

p(xt|rt, ht)p(rt|rt−1, ht−1)p(ht|ht−1),

=p(r1, h1)

T∏
t=2

p(xt|rt, ht)p(rt, ht|rt−1, ht−1).

At this point, we see that this expression is same as the
HMM joint distribution expression in Equation (1), if we
define a new variable rht : (rt ⊗ ht), which is defined
on the product space of rt and ht. Therefore, SHMM is
equivalent to an HMM with MK states. �

It is interesting to note that with the global HMM formu-
lation the special cases given in Section 2.3.1 reduce to
HMMs with a particular transition matrix structure. The
transition matrices of these special cases are specified in
Table 2.

3. Learning
3.1. Estimation of the Emission Matrix

Given that few assumptions hold, it is possible to learn the
global emission matrix O (up-to a permutation) ambiguity,
by learning a mixture model (Kontorovich et al., 2013).

Assumption 1: (Accessibility for SHMM and HMM-M)
The global transition matrix A has a stationary distribution

ξ � 0 (all elements of the stationary distribution are greater
than zero) and the sequence length T is large enough to
observe from all columns of the global emission matrix
O = [O1, O2, . . . , Ok].

Assumption 2: (Accessibility for MHMM and MM) All
the mixing weights are greater then zero π � 0, and the
transition matrix Ak has a stationary distribution ξk � 0.
Furthermore, the number of sequences N is large enough
and the individual sequences are long enough to observe
from all columns of the global emission matrix O.

Assumption 3: (Non-Degeneracy) L ≥ K and the global
emission matrix O has full column rank.

Theorem 1: Given that the assumption 1 and assumption
3 hold for SHMM and HMM-M (2 and 3 for MHMM and
MM), a MoM algorithm (e.g. Tensor Power method) can
recover the global transition matrix O, and the stationary
distribution ξ up-to a permutation P of the columns, and
elements, respectively.

Proof: For SHMM and HMM-M, since the global transi-
tion matrixA defines a fully connected Markov chain, after
a burn-in period the Markov chain converges to some sta-
tionary distribution ξ, and the model can be seen as a mix-
ture distribution with mixing weights ξ. Therefore, one can
estimate O and ξ with the Tensor power method, using the
second and third order moments E[x2x

>
1 ], E[x3⊗x2⊗x1]

by treating the data as if it was i.i.d.. For MHMM and MM,
the model can be seen as a simple mixture model with mix-
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Table 2. Transition matrix structures for several HMM variants

Mixture of Mixtures Mixture of HMMs
ν11

>
M 0 . . . 0

0 ν21
>
M . . . 0

. . .
0 0 . . . νK1>

M



A1 0 . . . 0
0 A2 . . . 0

. . .
0 0 . . . AK


Hidden Markov Model with Mixture Observations Practical SHMM
B1,1 ν11

>
M B1,2 ν11

>
M . . . B1,K ν11

>
M

B2,1 ν21
>
M B2,2 ν21

>
M . . . B2,K ν21

>
M

. . .
BK,1 νK1>

M BK,2 νK1>
M . . . BK,K νK1>

M




B1,1 A1,1 B1,2
1
M
1M1>

M . . . B1,K
1
M
1M1>

M

B2,1
1
M
1M1>

M B2,2 A2,2 . . . B2,K
1
M
1M1>

M

. . .
BK,1

1
M
1M1>

M BK,2
1
M
1M1>

M . . . BK,K AK,K



ing weights ξ = [π1ξ1, π2ξ2, . . . , πKξK ]. �

Note that, if the observation model is spherical Gaussian
then, one can use the single view moments E[xtx

>
t ] and

E[xt ⊗ xt ⊗ xt] (Hsu & Kakade, 2013). In fact, this is
true for all observation models provided that the moment
equations can be worked out.

3.2. Estimation of the Transition Matrix

Lemma 1: For models in Section 2.3.1, second order tem-
poral statistics of the global HMM factorizes as follows,

E[xt+1x
>
t ] = OAdiag(ξ)O> (3)

where, O and A are respectively the global emission ma-
trix and the global transition matrix and ξ ∈ RKM is the
stationary distribution of the global HMM for SHMM and
HMM-M, and [π1ξ1, π2ξ2, . . . πKξK ] vector for MHMM
and MM.

Proof: It is easy to see that the moment expression holds
for SHMM and HMM-M by considering that they have a
global HMM interpretation (The proof for the second order
moment of an HMM is in (Anandkumar et al., 2012b)).
For MHMM and MM we see that the moment expression
factorizes as,

S2,1 := E[xt+1x
>
t ] =

K∑
k=1

πkOkAkdiag(ξk)Ok, (4)

=OAdiag([π1ξ1, . . . , πKξK ])O,

=OAdiag(ξ)O.

This concludes the proof. �

Having observed that the moment expression factorizes as
indicated above, given an estimate Ô for the emission ma-
trix, an estimate ξ̂ for the stationary distribution, and an
empirical estimate Ŝ2,1 for the second order moment, an
estimator Â can be derived by using the pseudo inverse of

Ô and the reciprocal of ξ̂:

Â = Ô†Ŝ2,1diag(1/ξ̂)(Ô>)†. (5)

The drawback of this estimator is that it can result in neg-
ative entries. To alleviate this issue, we formulate a con-
strained optimization problem:

Lemma 2: Given that Ô = OP>, ξ̂ = ξP> and, Ŝ2,1 =
S2,1, the solution A∗ of the convex optimization problem
is equal to the permuted true transition matrix P(A).

min
A
‖Ŝ2,1 − ÔAdiag(ξ̂)Ô>‖F (6)

s.t. 1>MKA = 1>MK

A ≥ 0,

is deterministically related to the true transition matrix A
up-to the permutation P of the state labels.

Proof: In the case where we have the true moment S2,1,
and Ô has correct columns up-to a permutation ambiguity
P , the objective function achieves zero at the solution of
the problem A∗ = PAP>. �

Also note the optimization problem given in Lemma 2, is
convex since the constraints form a convex set and the ob-
jective function is convex (Boyd & Vandenberghe, 2004).
The constraints ensure that A is a conditional probability
table. Note that, it would have been possible to impose
structural constraints onA to recover the exact model struc-
tures given in Table 2, if we had known the permutation P .
In Section 3.4, we propose running another convex opti-
mization procedure to recover an exact structure.

3.3. The Depermutation

Let θ denote the true global parameters. After the param-
eter estimation steps given in Section 3.1 and Section 3.2,
the original parameters are contaminated with an estima-
tion noise ε : θ → θε, and they are permuted according to
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the permutation mapping P : θε → P(θε), such that the
output P(θε) = (Ô, Â, ν̂) is,

Ô = OεP
>, Â = PAεP

>, ν̂ = νεP
>.

where P is the permutation matrix which corresponds to
the permutation mapping P . The permutation P is a fun-
damental nuisance in learning HMMs with several layers
such as MHMM and SHMM since it causes individual
HMM parameters θ1:K to get mixed. The goal in the de-
permutation stage is to find a depermutation mapping P̃:
P(θε)→ P̃(P(θε)), such that P̃(Â) is a sufficiently block-
diagonal matrix, which would allow us to isolate individual
HMM components. We use the de-permutation algorithm
proposed in (Subakan et al., 2014), and our goal in this sec-
tion is provide a case study for SHMM special cases and
develop an insight regarding choice of the particular HMM
model, and difficulty of the depermutation problem.
Definition 1: For an SHMM, the matrix P̃(Â) is suffi-
ciently block diagonal if,

‖P̃(Âi.j)−BP2(i,j)P1(AP2(i,j))‖F ≤ γ, ∀(i, j),

where γ is a small enough number, P1 and P2 are the
depermutation mappings which respectively correspond to
the permutation within the blocks Âi,j and between blocks
(i, j), ∀(i, j).

To get a sense of the problem let us start with the cases that
correspond to the models in Section 2.3.1. For simplicity
we assume the estimation noise is negligible.

Case 1: (MM) As seen in Table 2, for Mixture of Mixtures
(MM) model columns of the global transition which corre-
spond to a group are identical to each other. As also can
be seen in the middle column of Figure 1, a block diago-
nal structure can easily be obtain by simply clustering the
columns of P(A), which is shown in the right column of
Figure 1.

2 4 6

1

2

3
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5

6

True T.M.

2 4 6

1

2

3

4

5

6

Permuted T.M.

2 4 6

1

2

3

4

5

6

De−permuted T.M.

Figure 1. (left) True Global Transition Matrix A, (middle) Per-
muted Global Transition Matrix P(A), (right) De-permuted
Global Transition Matrix P̃(P(A)), for an example Mixture of
Mixtures (MM) model.

Case 2: (MHMM) As can be seen from Table 2 the tran-
sition structure is not as simple as MM. However, as can
be seen easily, assuming that each block Ak,k has one

eigenvalue which is one, the transition matrix P(A) has
K eigenvalues which are one. Since the eigenvalue de-
composition is invariant with respect to P , P(A)∞ reveals
the same K cluster structure (Subakan et al., 2014), as the
permuted MM transition matrix of the previous example.
Therefore, it is possible to find a mapping P̃ to makeP(A),
by clustering the columns of P(A)∞.
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True T.M.
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P(A
r
)
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6

De−permuted T.M.

Figure 2. (left) True Global Transition Matrix A, (middle) Per-
muted Global Transition Matrix to the power P(A), (right) De-
permuted Global Transition Matrix P̃(P(A)), for an example
MHMM.

Case 3: (HMM-M) Despite the fact that HMM blocks are
connected, This case is easy because the individual blocks
are already converged and it is easy to make P(A) suffi-
ciently block diagonal by clustering the columns. This is
shown in Figure 3.
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De−permuted T.M.

Figure 3. (left) True Global Transition Matrix A, (middle) Per-
muted Global Transition Matrix P(A) of the Permuted Global
Transition Matrix P(A), (right) De-permuted Global Transition
Matrix P̃(P(A)), for an example HMM-M.

Case 4: (SHMM) SHMM corresponds to the most difficult
cases because of the presence of off-diagonal blocks in the
transition matrix and the fact that individual blocks are not
converged as HMM-M. In the case, where all blocks are
non-zero, the Markov chains becomes fully connected and
P(A)∞ converges to a stationary distribution, as shown in
Figure 4. However, if the eigenvalue ordering is preserved,
it is possible to recover the K cluster structure using a low
rank reconstruction.

Lemma 3: K eigenvalues of an SHMM global transition
matrix are same as the eigenvalues of its corresponding
regime transition matrix B.

Proof: See appendix.

Observation: If |λK(A)| = |λK(B)|, then there exists a



550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Spectral Learning of Hidden Markov Models with Group Persistence

2 4 6

1

2

3

4

5

6

True T.M.

2 4 6

1

2

3

4

5

6

P(A
r
)

2 4 6

1

2

3

4

5

6

De−permuted T.M.

Figure 4. (left) True Global Transition Matrix A, (middle) Low
rank reconstruction P(Ar) of the Permuted Global Transition
Matrix P(A), (right) De-permuted Global Transition Matrix
P̃(P(A)), for an example SHMM.

matrix Ar = V Λ̄V −1 such that,

KM∑
i=1

‖Ar(:, i)− C(:, hi)‖2 = 0 (7)

where, V is the eigenvector matrix, Λ̄ is a diagonal matrix
with only the first K largest eigenvalues being non-zero,
and C is the cluster centroid matrix, with hi being the clus-
ter indicator of the i’th column.

So, we conclude that if B has group persistence (or anti-
persistence) with large |λK(B)| it is much more likely that
eigenvalues of B will be the top K eigenvalues and there-
fore, a permutation mapping P̃ is recoverable by cluster-
ing the columns of the rank-K reconstruction Ar to make
P(A) sufficiently block diagonal, with γ = 0 in Definition
1. Now, we will look at the case where the estimation noise
ε is not negligible.

3.3.1. SENSITIVITY OF EIGENVALUES OF Â TO NOISE

Theorem 2:

‖P(Λ)− Λ̂‖F ≤ c3

(
c1

1 + log(1/δ)√
T

+ c2‖O† − Ô†‖F

+ c3‖ξ−1 − ξ̂−1‖F

)
,with probability 1− δ.

where, c1 = ‖O†‖2‖ξ−1‖ , c2 = ‖Ŝ2,1‖‖ξ−1‖‖(O>)†‖ +

‖Ô†‖‖Ŝ2,1‖‖ξ̂−1‖, c3 = ‖Ô†‖‖Ŝ2,1‖‖(O>)†‖, and c4 =√
κ(A)κ(Â) and, T is the number data items used for Ŝ2,1.

We denote diag(1/ξ) and diag(1/ξ̂) respectively by, ξ−1

and ξ̂−1 to save space.

Proof: See appendix.

We see from this Theorem that if Ô = O, and T →∞, the
deviation between the eigenvalues ofA and Â goes to zero.

3.4. Refinement of the parameters

Once the de-permutation mapping P̃ is obtained, it’s pos-
sible to refine the parameter estimates to exactly match the
corresponding model structure by imposing additional con-
vex constraints depending on the transition structure of the
model (given in Table 2) in the convex optimization prob-
lem introduced in Section 3.2:

min
A
‖Ŝ2,1 − P̃(Ô)Adiag(P̃(ξ̂))P̃(Ô>)‖F (8)

s.t. 1>MKA = 1>MK

A ≥ 0,

f(A) = b

Here are some choices for the constraint f(A) = b, de-
pending on the model structure:
MHMM:A.∗Θ = 0, where .∗ is the element-wise product,
Θ is a binary mask, zero on the block diagonals and one on
the off block diagonals. Note that doing this masking in
Section 3.2 was not possible because we did not know P ,
and hence it was not possible to construct a valid Θ.
HMM-M: Ai,jD = 0, ∀(i, j), where columns of D ∈
RM×(M

2 ) have two non-zero elements, one of which is 1
and the other one is −1. This ensures that Ai,j(:, k) =
Ai,j(:, l), ∀(k, l), k 6= l.
MM: A. ∗ Θ = 0, and Ai,jD = 0, ∀(i, j) can be used to
impose the model structure. θ and D are defined same as
above.
SHMM: 1>MAi,jD = 0, ∀(i, j), where D is defined
same as above. In this case the constraint ensures that all
columns within the block Ai,j sum up to the same number,
which is in accordance with the transition structure of the
SHMM.
USHMM: A. ∗ Θ = (B̂ ⊗ 1M1>M ). ∗ Θ, where Θ is de-
fined same as above, B̂ is an estimate from P̃(A), where,
B̂i,j = 1

K

∑
l,k(P̃(A))i,j(l, k). This ensures uniformity in

off-block diagonals.

After this refinement step we have a transition matrix which
is in an exact form, and it is straightforward to extract the
local components θ1:K .

4. Experiments
4.1. Depermutation Experiment on Synthetic Data

In this experiment, we investigate the effect of group persis-
tence on the parameter estimation for SHMM. We use uni-
form transition SHMM model (USHMM) defined in Sec-
tion 2.3.1. We generated a sequence of length 1000. The
emission model is unit variance spherical Gaussian with
columns of the emission matrix drawn from a zero mean
spherical Gaussian with variance 5. The regime transition

matrix is of the form B =

[
α 1−α

K
1−α
K α

]
. The columns of
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Figure 5. Depermuting estimated transition matrices on synthetic data, (First row) True Transition Matrices, (Second Row) Low Rank
Reconstruction Âr , (Third Row) P̃(A) before refinement, (Fourth Row) P̃(A) after refinement, (Fifth Row) The error

∑
i,j ‖P̃(Âi.j)−

BP2(i,j)P1(AP2(i,j))‖F , before and after refinement. (Note: In this colormap darker tones show larger numbers.)

the blocks Ai,j are drawn from a Dirichlet(1, . . . , 1) dis-
tribution. We use the tensor power method (Anandkumar
et al., 2012a) to recover the columns of O. As can be seen
in Figure 5, best results are obtained for large values of α,
which correspond to the group persistent case. We compute
the error

∑
i,j ‖P̃(Âi.j) − BP2(i,j)P1(AP2(i,j))‖F , by re-

solving the permutation between and within blocks. It is in-
teresting to note that the permutation is still recoverable for
small values of α, which correspond to the anti-group per-
sistent case. In this case theB matrix has negative eigenval-
ues, but their magnitude is large. Furthermore, we see that
the refinement step helps lowering the estimation error for
all α values. We also do the same experiment for HMM-M,
we include it in the appendix due to space limitations.

4.2. Segmentation Experiment on Synthetic Data

We compared three methods to learn the parameters of an
SHMM for segmenting a data sequence. The first is [MoM
+ spectral], which is the algorithm proposed in the paper,
the second is [k-means + spectral], which uses a k-means
algorithm to estimate the emission matrix up-to a permu-
tation, followed by a label counting step to estimate the
global transition matrix up-to permutation. The spectral
algorithm in (Subakan et al., 2014) is used to depermute
the parameters. The third method uses randomly generated
parameters. In addition, we looked at how useful these pa-
rameters are for initializing EM. For randomly initialized
EM, we do ten random restarts and take the solution with
the highest log likelihood.

We generated L = 20 dimensional 100 data sequences of
varying lengths for K = 3 regimes and M = 3 states
per regime. We used a unit variance spherical Gaussian
emission model with columns of the emission matrix drawn
from a zero mean spherical Gaussian with variance 5. The
transition structure was set same as the experiment in the
previous section with α = 0.95. Figure 6 shows the av-
erage segmentation accuracy results for the HMM-M and
SHMM models, for 100 sequences.

Given a learned parameter set, we used the standard Viterbi
decoding to segment the observation sequence by regime
(group) label. As expected, a random initialization per-
forms much worse on average for all sequence lengths
compared with either the [MoM + spectral] or [k-means
+ spectral] method. Furthermore, [MoM + spectral] im-
proves over [k-means + spectral] for both models. In the
case of the SHMM, the result of EM initialized with ei-
ther method typically leads to an improvement in segmen-
tation accuracy. In the case of the HMM-M, however, EM
can make the solution worse. This is probably due to the
fact that EM for learning the HMM-M treats the parame-
ters associated with each state (i.e. Ok, νk, k = 1, . . . ,K)
more independently in theM step than EM for learning the
SHMM. Because of this, it has trouble identifying the cor-
rect permutation of the states even with a decent initializa-
tion. As expected, EM initialized with random parameters
fares quite poorly even when taking the solution with the
highest log likelihood out of 10 attempts.

Run times for several sequence lengths are shown in Fig-
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Figure 6. (Top Left) Accuracy for Synthetic Data, SHMM (Top Middle) Accuracy for Synthetic Data, HMM-M (Top Right) Run time
Comparison for Synthetic Data, SHMM, (Bottom Left) Run time Comparison for Synthetic Data, SHMM-M, (Bottom Middle) Accuracy
for Saxophone Data, SHMM, (Bottom Right) Accuracy for Saxophone Data, HMM-M. Note: The legend applies to all figures.

ure 6. Note that the vertical axis is on a log scale. The time
taken for each method is an accumulation of parameter es-
timation, EM (if applicable), and segmentation. We can see
that the [MoM + spectral] method with or without further
EM refinement performs better than EM initialized with [k-
means + spectral] for longer sequence lengths. This indi-
cates that [MoM + spectral] provides a better initialization
for EM than [k-means + spectral], leading to fast conver-
gence. The line corresponding to EM initialized at random
demonstrates the linear growth in the amount of data. This
arises from the forward-backward passes along the data se-
quence in the E step. For much larger datasets, the [MoM +
spectral] method provides an enormous computational ad-
vantage.

4.3. Saxophone note sequence segmentation

The saxophone sequence data consists of the concatenation
of saxophone notes on 100 audio files. We generated raw
audio data by (1) generating SHMM parameters, (2) sam-
pling regime and state sequences with K = 3 and M = 3,
and (3) building a time-domain signal according to the state
sequence. Each switch state (regime) represented a set of
note pitches associated with a major or minor key signa-
ture and each emission state represented a single note. A
note was set to play for as long as the state indices didn’t
change. We associated each state with a duration of 1,024
samples. This resulted in about 8 time steps per second (at
a sampling rate of 16 kHz).

We mapped this time-domain signal to the frequency do-
main with the Short-Time Fourier Transform (STFT) using

window and hop sizes of 1,024 samples and subsequently
computed the log-magnitude of the resulting spectra. This
results in a sequence of sparse, 513-dimensional vectors.
To reduce the dimensionality, we applied a projection to a
random 20-dimensional basis. This dataset was then given
as input to the learning algorithms. Given a learned pa-
rameter set, we used standard Viterbi decoding to segment
the low-dimensional observation sequence by regime la-
bel. The projection step is beneficial for two reasons: (1)
it compresses the (inherently sparse) STFT representation
into fewer dimensions to reduce run time and (2) it makes
the high-dimensional clusters corresponding to each state
more spherical (Dasgupta, 2000). Furthermore, we can
appeal to the Johnson-Lindenstrauss Lemma (Dasgupta &
Gupta, 1999) to understand why the clusters remain sepa-
rated after the projection. Figure 6 shows the segmentation
accuracy results, for 100 sequences. We can see that they
qualitatively mirror the results of the synthetic data trials.

5. Conclusions
In this paper, we have shown that it is possible to use
a MoM learning procedure for learning special cases of
SHMM. We have shown that the success of the learning
algorithm depends on the group persistence property. We
have also proposed a convex optimization procedure to be
able to recover the model parameters in their true form,
which is validated by the experiments. Experiments on se-
quence segmentation also confirm that the proposed MoM
procedure is computationally efficient and accurate com-
pared to the more traditional EM approach.
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