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Abstract
In recent years, method-of-moments (MoM)
based algorithms for latent variable models have
been popular in the machine learning commu-
nity, as a computationally cheaper alternatives
to more conventional maximum likelihood based
algorithms. Although there are MoM algorithms
for the Hidden Markov Model (HMM), Gaus-
sian Mixture Model (GMM), and Latent Dirich-
let Allocation (LDA), it is unclear how to ex-
tend these methods to more complex models.
In this paper, we develop a MoM-based ap-
proach using Non-negative Matrix Factorization
(NMF) for learning several time series models.
These include the Mixture of HMMs (MHMM),
Switching HMM (SHMM) and Factorial HMM
(FHMM). We show experimentally that NMF is
considerably faster than conventional maximum-
likelihood approaches and gives comparable es-
timation accuracies.

1. Introduction
In recent years, method-of-moments (MoM) learning al-
gorithms with unique solution guarantees for several la-
tent variable models have been developed in the ma-
chine learning literature. Examples include the Hidden
Markov Model (HMM) (Hsu et al., 2009; Anandkumar
et al., 2012c;b), Gaussian Mixture Model (GMM) (Hsu &
Kakade, 2013), Latent Dirichlet Allocation (LDA) (Anand-
kumar et al., 2012a), and Independent Component Analysis
(ICA) (Anandkumar et al., 2012b). These algorithms pro-
vide computationally cheaper alternatives to conventional
Expectation-Maximization (EM) (Dempster et al., 1977)
based approaches that are free of locally optimal solutions.

While there are MoM algorithms for a handful of mod-
els, a general framework that is as widely applicable as
EM does not exist. Therefore, it is not clear how to de-
rive MoM learning algorithms with unique solution guar-
antees for more sophisticated models such as the Mixture

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

of Hidden Markov Models (MHMM) (Smyth, 1997), the
Switching HMM (SHMM) (Murphy, 2002), or the Facto-
rial HMM (FHMM) (Ghahramani & Jordan, 1997).

There exists Non-negative Matrix Factorization (NMF)
(Lee & Seung, 1999) based MoM algorithms for learning
the parameters of an HMM (Cybenko & Crespi, 2011; Lak-
shminarayanan & Raich, 2010; Shashanka, 2011). This ap-
proach amounts to doing alternating least squares or having
an iterative multiplicative update scheme. However, it has
not been applied to more sophisticated models.

In this paper, we propose a general NMF-MoM framework
to learn the parameters of several time series models. We
do this by converting each to an HMM with a specific tran-
sition structure and developing multiplicative update rules
(Lee & Seung, 2001) that iteratively update the parameter
matrices.

Although one loses the uniqueness properties of the spec-
tral learning algorithms with NMF, the computational ad-
vantage of NMF-MoM is significant. Learning of time
series models is typically done with maximum-likelihood
training using EM (ML-EM). An important drawback of
ML-EM is that one has to perform inference for the latent
variables at each iteration. For example, for MHMM, one
has to do forward-backward message-passing for each se-
quence at each iteration. Therefore, in abundance of data,
learning the parameters of the model may be computation-
ally expensive. However, learning the model with a NMF-
MoM approach amounts to the estimation of some observ-
able moments and the factorization of a moment matrix (or
tensor) with NMF, where both of which can be executed
quite fast.

We perform experiments on synthetic data to compare the
accuracy and speed of the proposed learning methods with
EM. We observe that our approach is substantially faster
than ML-EM when data is plentiful. In addition, we
achieve comparable estimation accuracies. We also con-
duct experiments with real datasets to show the validity of
our approach.
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2. Notation
We used square brackets [−] for the indicator function. We
use MATLAB notation to select a column or row of a ma-
trix. For example, O(:, k), O(k, :) and O(k, j) denote the
k’th column and row and (i, j)′th entry of the matrix O,
respectively. We use boldface for matrices when doing ma-
trix calculations. The outer product operator ⊗ is defined
as (a ⊗ b)(i, j) = a(i)b(j). We use � to denote element-
wise matrix multiplication. We denote a sequence of length
T as x1:T = {x1, x2, . . . , xT }. We use boldface to de-
note a sequence so that x1:T,n =xn and consequently we
use x1:N = {x1,x2, . . . ,xN} to denote a dataset of N se-
quences. Note that xt ∈ RL in general. The estimate for
a parameter θ is shown as θ∗. Finally, we use subscript to
denote parameters belonging to slices of a tensor, e.g. Ok
matrix is the k’th slice of O tensor.

Some important indices, variables and parame-
ters that are used throughout the paper are as
follows. n ∈ {1, . . . , N} : sequence index,
t ∈ {1, . . . , T}: time index, k ∈ {1, . . . ,K}:
cluster index, h ∈ {1, . . . ,K} : cluster/regime indicator,
rt ∈ {1, . . . J}: state indicator, xt ∈ {1, . . . L}:
observation, Ok ∈ RL×J : cluster emission matrix,
Õ =

[
O1 O2 · · · OK

]
∈ RL×KJ : stacked emis-

sion matrix, B ∈ RK×K : regime transition matrix,
Ak ∈ RJ×J : cluster transition matrix, νk ∈ RJ :
cluster initial state distibution, Âk = Akdiag(νk),
Ã ∈ RJK×JK : global joint state matrix, π ∈ RK :
prior vector, 1ab ∈ Ra×b: ones matrix.

3. Model Definitions
In this section, we give the definitions of the models used in
this paper, and the corresponding variables and parameters.
We also describe the modeling choices used throughout the
paper.

3.1. Hidden Markov Model

In Hidden Markov Model (HMM), an observed sequence
x = x1:T is generated conditioned on a latent Markov
chain r1:T , with rt ∈ {1, . . . J}. Given the model parame-
ters θ = (O,A, ν), the likelihood p(x1:T |θ) of an observa-
tion sequence x1:T of length T is defined as follows:

p(x1:T |θ) =
∑
r1:T

p(x1:T , r1:T |θ) (1)

=
∑
r1:T

T∏
t=1

p(xt|rt)p(rt|rt−1)

=
∑
r1:T

T∏
t=1

O(xt, rt)A(rt, rt−1)

The model parameters are defined as follows:

• ν(u) = p(r1 = u|r0) = p(r1 = u), the initial latent
state distribution.

• A(u, v) = p(rt = u|rt−1 = v), t ≥ 2, latent state
transition matrix.

• O(:, u) = E[xt|rt = u], emission matrix.

where, ν ∈ RJ , A ∈ RJ×J and O ∈ RL×J . A column
O(:, u) of the observation matrixO is defined as the expec-
tation of xt, conditioned on the latent state rt. The choice
of p(xt|rt), determines what the columns of O correspond
to. Some frequently used choices are:

• Gaussian: p(xt|rt = u) = N (xt;µu, σ
2)

then, O(:, u) = E[xt|rt = u] = µu.

• Poisson: p(xt|rt = u) = PO(xt;λu)
then, O(:, u) = E[xt|rt = u] = λu.

• Multinomial: p(xt|rt = u) = Multinomial(pu, S)
then, O(:, u) = E[xt|rt = u] = pu.

The first choice is multivariate, isotropic Gaussian with
mean µu ∈ RL. The second distribution is Poisson with
intensity parameter λu ∈ RL. This choice is particularly
useful for counts data. The last density is a multinomial dis-
tribution, with parameter pu ∈ RL, and number of draws
S. In this work, we use the Multinomial distribution in all
of the models. In audio modeling applications, for exam-
ple, S is taken to be a large number so that the observations
describe the discrete Fourier transform (DFT) magnitude
of the signal over time (Mysore et al., 2010).

3.2. Mixture of HMMs

Mixture of HMMs is a useful model for cluster-
ing sequences where each one is modeled with one
of the K HMMs. Given model parameters θ =
(O1:K , A1:K , ν1:K , π), the likelihood p(xn|θ) of an obser-
vation sequence xn = {x1,n, x2,n, . . . , xTn,n} of length
Tn is computed as convex combination of the likelihood of
K hidden Markov models:
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Table 1. Probabilistic graphical models of the time series models.
Hidden Markov Model Mixture of HMMs

r1 r2 . . . rT

x1 x2 . . . xT

r1,n r2,n . . . rTn,n

hn

x1,n x2,n . . . xTn,n

n = 1 . . . N
Switching HMM Factorial HMM

h1 h2 . . . hT

r1 r2 . . . rT

x1 x2 . . . xT

r11 r12 . . . r1T

x1 x2 . . . xT

r21 r22 . . . r2T

p(xn|θ) =
K∑
k=1

p(hn = k)p(xn|hn = k) (2)

=

K∑
k=1

πk
∑
rn

p(xn, rn|hn = k)

=

K∑
k=1

πk
∑

r1:Tn,n

Tn∏
t=1

p(xt,n|rt,n, hn = k)p(rt,n|rt−1,n, hn = k)

=

K∑
k=1

πk
∑

r1:Tn,n

Tn∏
t=1

Ok(xt,n, rt,n)Ak(rt,n, rt−1,n)

where, hn ∈ {1, 2, . . . ,K} is the latent cluster indica-
tor, and rn = {r1,n, r2,n, . . . , rTn,n} is the latent state se-
quence of the observed sequence xn. π ∈ RK is defined
as the cluster prior probability vector. Note that, if a se-
quence is assigned to k’th cluster (meaning hn = k), then
the transition matrix Ak and the observation matrix Ok are
used to generate that particular sequence. That is to say, we
have a mixture of HMMs where each mixture component
is specified by the model parameters θk.

3.3. Switching HMM

Switching state space HMM is a generalization of Mixture
of HMMs, where the cluster indicator variable h is allowed
to take differing values within a single sequence, as illus-
trated in the graphical model in Table 1. Allowing h to
change within a sequence enables us to use this model for
segmentation. The emission and transition matrices used to

generate the observations vary as h changes throughout the
sequence.

Given the model parameters θ =
(O1:K , A1:K , ν1:K , B, π), the likelihood p(x1:T |θ) of
a given sequence x1:T is defined as follows:

p(x1:T |θ) =
∑

h1:T ,r1:T

p(x1:T , h1:T , r1:T |θ1:K) (3)

=
∑

h1:T ,r1:T

T∏
t=1

p(xt|rt, ht)p(rt|rt−1, ht, ht−1)p(ht|ht−1)

=
∑

h1:T ,r1:T

T∏
t=1

Ort(xt, rt)
{
[ht = ht−1]Aht(rt, rt−1)

+ [ht 6= ht−1]Aht,ht−1
(rt, rt−1)

}
B(ht, ht−1)

where ht ∈ {1, . . .K} is the latent regime indicator, and
rt ∈ {1, . . . J} is the latent state indicator. Aht,ht−1 de-
notes the transition matrix to be used whenever there is a
regime change (ht 6= ht−1). If there is no regime change
(ht 6= ht−1), then Aht,ht−1

= Aht . Note that Aht,ht−1

matrices are fixed in learning. The regime transition matrix
B ∈ RK×K is defined as B(u, v) = p(ht = u|ht−1 =
v), and regime initial distribution π ∈ RK is defined as
π(u) = p(h1 = u).

3.4. Factorial HMM

The factorial HMM is useful for modeling additive mix-
tures. An observed sequence is modeled as the weighted
sum of the outputs of K HMMs. For K = 2, given the
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model parameters θ = (O1:2, A1:2, ν1:2), the likelihood
p(x1:T |θ) of a given sequence x1:T is defined as follows:

p(x1:T |θ) =
∑

r11:T ,r
2
1:T

p(x1:T , r
1
1:T , r

2
1:T |θ) (4)

=
∑

r11:T ,r
2
1:T

T∏
t=1

p(xt|r1t , r2t )p(r1t |r1t−1)p(r2t |r2t−1)

=
∑

r11:T ,r
2
1:T

T∏
t=1

1

2

{
O1(xt, r

1
t ) +O2(xt, r

2
t )
}

×A1(r
1
t , r

1
t−1)A2(r

2
t , r

2
t−1)

where r11:T is the first, and r21:T is the second latent chain.
Conditioned on them, the observation sequence x1:T is
generated using the observation model 1

2

{
O1(xt, rt) +

O2(xt, rt)
}

. Note that the mixing weights are set to 1
2 in

this paper. In general, mixing weights are also parameters
to be estimated.

4. MoM-NMF algorithms for learning
A common approach to learn latent variable models like
the ones that are defined in Section 3 is to use a maximum
likelihood criterion. A parameter set θ∗ is chosen such that
the log-likelihood of the observed data is maximized:

θ∗ =argmax
θ

log p(x|θ) = argmax
θ

log
∑
h

p(x, h|θ) , (5)

where x is the observed data, h is a set of hidden variables,
and θ is the parameter set to be optimized. Because of the
presence of a summation over the latent variables h, which
may be hard to compute in general, it is easier to iteratively
maximize a lower bound on the log likelihood. The esti-
mate in iteration τ is:

(θτ )∗ =argmax
θτ

Ep(θτ−1|x,h)[log p(x, h|θτ )] . (6)

This EM lower bound involves computing the posterior
p(θτ−1|x, h) over the model parameters at each iteration.
In the temporal models that we consider, this requires a
message passing algorithm. For example, for a mixture
of HMMs, we need to compute the posterior for each se-
quence xn for each cluster k at each iteration τ . This can
be computationally prohibitive for large datasets. The num-
ber of calculations required per iteration is O(J2KTN +
JKLTN), where N is the number of sequences and T is
the average sequence length. Since the dependence is linear
in N , EM is infeasible for large datasets.

A computationally cheaper learning scheme is as follows.
We can compute moment estimates from the data and es-
timate the model parameters via a factorization of the mo-
ment matrix/tensor. We note that the 2nd order moment ma-
trices for these models all factorize in the form:

P := E[xt ⊗ xt−1] = ÕÃÕ> , (7)

where P ∈ RL×L is defined as the true moment matrix,
and the block matrix Õ ∈ RL×JK+ contains the HMMs’
emission matrices, stacked side-by-side. Ã ∈ RJK×JK+ is
the joint state distribution matrix that contains the transition
structure of the model embedded in a single, larger HMM.
The details of Ã for each model are given in the subsequent
sections.

Having made this observation, the learning problem re-
duces to the following non-negative factorization problem:

θ∗ = (Õ∗, Ã∗) = argmin
Õ≥0,Ã≥0

d(V‖ÕÃÕ>) , (8)

where V is an empirical estimate for the moment matrix
P = E[xt ⊗ xt−1], and d(.‖.) is an appropriate divergence
measure. We use KL divergence as it is commonly used in
NMF community. We continue by providing 2nd order mo-
ment matrix decomposition descriptions for each model.
Higher order decompositions for each model are given in
the supplemental material.

4.1. Hidden Markov Model

The 2nd-order moment matrix of hidden Markov model is
decomposed as follows:

P =E [xt+1 ⊗ xt] (9)

=
∑
rt

∑
rt+1

E[xt+1|rt+1]p (rt+1|rt) p(rt)E[xt|rt]

=
∑
rt

∑
rt+1

O(xt+1, rt+1)A(rt+1|rt)ν(rt)O(xt, rt)

=OAdiag(ν)O> = OÂO>

where O and A are respectively the emission and transition
matrices of the HMM. Note that Â = p (rt+1, rt) is the
joint consecutive state distribution. Thus, the true moment
P is:

P = OÂO> = ÕÃÕ> . (10)

The multiplicative update rules to factorize the empirical
moment matrix V are:
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Table 2. Global joint state distributions Ã for the time series models.

Hidden Markov Model Mixture of HMMs

Â


π1Â1 0 · · · 0

0 π2Â2 · · · 0
...

...
. . .

...
0 0 · · · πKÂK


Switching HMM Factorial HMM

A1B11 A12B12 · · · A1K B1K

A21B21 A2B22 · · · A2K B2K

...
...

. . .
...

AK1BK1 AK2BK2 · · · AK BKK

 diag (π̃) 1
K2


Â1 Â11JJÂ2 · · · Â11JJÂK

Â21JJÂ1 Â2 · · · Â21JJÂK

...
...

. . .
...

ÂK1JJÂ1 ÂK1JJÂ2 · · · ÂK



Õ← Õ�

(
V .

V̂

)
ÕÃ> +

(
V .

V̂

)>
ÕÃ .

1LLÕ
(
Ã> + Ã

) , (11)

Ã← Ã�
Õ>

(
V .

V̂

)
Õ .

Õ>1LLÕ
. (12)

where V̂ is the approximation of V constructed with Ã
and Õ. Matrix division is performed element-wise. Iterat-
ing (11) and (12) is guaranteed to converge to a local mini-
mum of (8) (Lee & Seung, 2001).

4.2. Mixture of Hidden Markov Models

The 2nd-order moment matrix of the mixture of HMMs is
decomposed as follows:

P =E[xt+1 ⊗ xt] =
K∑
h=1

p(h) · · · (13)∑
rt

∑
rt+1

E[xt+1|rt+1, h]p(rt, rt+1|h)E[xt|rt, h]

=

K∑
h=1

π(h)
∑
rt

∑
rt+1

Oh(xt+1, rt+1)Ah(rt+1|rt)

. . . νk(rt)Oh(xt, rt)

=

K∑
k=1

πkOkÂkO
>
k = ÕÃÕ>

We have dropped the sequence index n to avoid clutter and
defined a block-diagonal Ã for the entire MHMM (see Ta-
ble 2). Since the factorization is identical in form to that
of the single HMM case, the NMF updates are identical
to (11) and (12). A similar approach was taken to derive
update rules based on the 3rd and 4th moments (see supple-
mental materials). Note that if Ã is initialized as block-

diagonal, it will remain this way throughout the multiplica-
tive updates.

4.3. Switching Hidden Markov Model

The 2nd-order moment matrix for the switching HMM is
decomposed as follows:

P =E[xt+1 ⊗ xt] =
∑
ht

∑
ht+1

p (ht, ht+1)
∑
rt

∑
rt+1

· · ·

E[xt+1|rt+1, ht+1]p(rt+1|rt, ht, ht+1)p(rt|ht)E[xt|rt, ht]

=
∑
ht

∑
ht+1

B(ht, ht+1)
∑
rt

∑
rt+1

Oht+1
(xt+1, rt+1) · · ·

Aht+1,ht(rt+1, rt)νht(rt)Oht(xt, rt)

=

K∑
k=1

K∑
k′=1

Ok Ã(kk′)O
>
k′ = ÕÃÕ> (14)

where Ã(kk′) denotes the (k, k′)th block of the Ã matrix
defined for the entire SHMM (see Table 2) and B is the
regime transition matrix. The blocks of Ã encode the state
transition information given the regime indicators ht and
ht+1. The multiplicative update for Õ is identical to (11).
The other updates are:

Akk′ ← Akk′ �
O>k

(
V .

V̂

)
Ok′ .

O>k 1LLOk′
, (15)

Bkk′ ← Bkk′ �
11L

[(
V .

V̂

)
� Ok Ã(kk′) O

>
k′

]
1L1 .

11L

[
Ok Ã(kk′) O

>
k′

]
1L1

,

(16)

π̃ ← π̃ �

[
Ã>Õ>

(
V .

V̂

)
� Õ>

]
1L1 .

Ã>Õ>1L1 � Õ>1L1
, (17)

where:
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π̃ =
[
π1 ν

>
1 π2 ν

>
2 · · · πK ν>K

]>
. (18)

We can fix the off-diagonal blocks in Ã for simplicity. For
example, we may know that when a regime change occurs
(i.e. ht 6= ht+1), all states are equally likely at time t + 1.
In this case, Akk′ = 1

J 1JJ , k 6= k′. Alternatively,
we may impose that rt+1 = 1 (e.g. for left-to-right models
used for speech or gesture datasets), in which case we have
that Akk′ =

[
1 0 · · · 0

]>
11J , k 6= k′.

4.4. Factorial Hidden Markov Model

In order for our approach to be tractable, an emission model
O(xt, r

1:K
t ) is assumed:

O(xt, r
1:K
t ) =

1

K

K∑
k=1

Ok(xt, r
k
t ) . (19)

where r1:Kt =
{
r1t , . . . , r

K
t

}
is the set of HMM states at

time t. Since we average over the entire sequence to com-
pute moments, this is equivalent to assuming that the mix-
ing proportions p(rkt ) are uniform on average. This is rea-
sonable in many cases.

The 2nd-order moment matrix for the factorial HMM is de-
composed as follows:

P =E [xt+1 ⊗ xt] (20)

=
∑
r1:Kt

∑
r1:Kt+1

E[xt+1|r1:Kt+1 ]p
(
r1:Kt+1 , r

1:K
t

)
E[xt|r1:Kt ]

=
1

K2

K∑
k=1

OkÂkO
>
k +

∑
k′ 6=k

OkÂk1JJÂk′O
>
k′


=ÕÃÕ> .

where we have defined an Ã for the entire FHMM (see
Table 2). This formulation can easily be generalized to the
case where the HMMs have differing numbers of states J .

The NMF update for Õ is identical to (11). The updates for
the transition matrices can be written as:

Ak ← Ak �
EkR1

(
Õ>

(
V .

V̂

)
Õ�Qk

)
R2E

>
k

EkR1

(
Õ>1LLÕ�Qk

)
R2E>k

. (21)

where, for example, when K = 2:

Q1 =

[
1JJ 1JJ
1JJ 0

]
, Q2 =

[
0 1JJ

1JJ 1JJ

]
, (22)

R1 =

[
I 1JJA

>
2

1JJA
>
1 I

]
, R2 =

[
I A>1 1JJ

A>2 1JJ I

]
,

E1 =
[
I 0

]
, E2 =

[
0 I

]
.

We also derived updates based on the factorization of the
3rd moment tensor (see supplemental materials).

4.5. Computational complexity

The computation complexities of the ML-EM and NMF-
MoM algorithms are given in Table 3. The length T of the
data sequences (and the number of sequencesN , in the case
of the MHMM) appears as a multiplicative factor for the
ML-EM algorithms and as an additive term for the NMF
algorithms. Although ML-EM typically converges in fewer
iterations, message-passing in the E step is very costly.
This shows the computational advantage of the MoM ap-
proach. We also note that for the factorial HMM, the EM
algorithm runs in time that is exponential in the number of
latent state chains K. However, this dependence is at worst
cubic in the MoM methods. Thus, the computational ad-
vantage of the proposed approach may be substantial for
complicated models.

5. Experiments
In all the synthetic experiments described in this section,
parameter matrices were generated in the same way. The
columns of the O matrices were generated from a Dirich-
let distribution with parameters αl = 0.15, l = 1, . . . , L.
This ensures that they are relatively sparse. The transition
matrices were generated as A = βI + (1− β) Is, where
0.6 < β < 1 and Is is the identity matrix with a downward
circular shift applied to the rows. Thus, the A matrices are
ergodic but relatively sparse. Prior vectors were generated
from a uniform distribution over the probability simplex.
For the NMF-MoM algorithms, parameters are initialized
with random non-negative values.

5.1. Mixture of HMMs

5.1.1. SYNTHETIC DATA

The goal of the experiments with synthetic data is to un-
derstand the impact of dataset size on sequence clustering
accuracy and computation time. We generated 100 sets of
MHMM data consisting of 3 clusters, each of which con-
tains 10 sequences and J = 3, L = 9. We report the
clustering accuracies and estimation time for sequences of
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Table 3. Computational complexities of ML-EM and NMF-MoM algorithms per iteration.
Model EM 2nd order 3rd order 4th order

MHMM O(J2KTN + JKLTN) O(J2KL+ JKL2) O(J2KL2 + JKL3) O(J2KL3 + JKL4)

SHMM O(J2K2T + JKLT ) O(J2K2L+ JKL2) O(J2K2L2 + JKL3)

FHMM O(J2KT + JKLT ) O(JKL2 + J2K2L+ J3K3) O(J2K3L2 + JK3L3 + J3K3L)

length L ∈ [10, 10, 000] (see supplemental materials for
pseudocode).
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Figure 1. Top: Sequence Length vs Clustering accuracy Experi-
ment, Bottom: Sequence Length vs Computation Time Experi-
ment

We see in Figure 1 that the 4th order MoM algorithm per-
forms nearly as well as the maximum-likelihood based EM
algorithm with short sequences. With long sequences, the
MoM algorithm performs slightly better. The savings in
computation with NMF-MoM is significant when the se-
quences are long. The increase in computation time is
due to the assignment step for each sequence after learn-
ing (a single forward pass for each sequence). However,
the situation is much worse for ML-EM since we need to
do forward-backward passes for each sequence in every it-
eration. The EM iterations were stopped automatically as
soon as the clustering became stable.

5.1.2. REAL DATA

We used the 3rd order decomposition algorithm for the mix-
ture of HMMs on the ”Character Trajectories” dataset from

Figure 2. Clustering ”a” and ”b” character trajectories.

the UCI machine learning repository (Bache & Lichman,
2013). The data consists of handwritten character trajec-
tories written on a PDA screen. The data in its original
format is a 3-dimensional, continuous time series. The first
two dimensions are the derivative of the spatial coordinates
and the third is the pen pressure as a function of time. We
discretized the data using K-means clustering with 14 clus-
ters. The original dataset contains 2,858 sequences in 20
clusters. When we use the first 160 data items containing
97 ”a” letters and 63 ”b” letters, we obtain a 98% clustering
accuracy. The clustering (with moment estimation) takes
7.5 seconds. Examples of clustered characters are given
in Figure 2. NMF-MoM is able to cluster the trajectories
correctly despite within-cluster variations.

5.2. Switching HMM

We ran 100 trials with synthetic data in which parame-
ter matrices for a 2-regime SHMM were generated and a
training sequence was sampled from the resulting model.
The regime transition matrix was strongly diagonal. Each
regime had 3 states. We also generated 10 test sequences
of length 1,000 and dimensionality 10. Observation vec-
tors were sampled from the appropriate multinomial dis-
tribution with 10 draws. The off-diagonal transition ma-
trix blocks in Ã were set to be uniform. We learned the
parameters with 2nd and 3rd order NMF-MoM algorithms
as well as ML-EM. The NMF-MoM algorithms were run
for 10,000 iterations each and the ML-EM algorithm was
terminated when the log likelihood improved by less than
0.01%. The Viterbi algorithm was run on the test sequences
and the decoding accuracy was measured via regime label-
ing. Thus, the specific state reported within a regime is
irrelevant.

Accuracy and training time results for these experiments
are shown in Figure 3. The NMF-MoM algorithms per-
form better than ML-EM in terms of regime labeling. They
also don’t suffer from a rapid increase in time complexity
with increasing sequence length that is incurred due to the
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Figure 3. Results of synthetic trials for the switching HMM. Top:
Segmentation accuracy. Bottom: Training time.

forward and backward passes of EM. The 3rd order NMF-
MoM algorithm performs the best since it is able to take
advantage of higher-order moment information.

5.3. Factorial HMM

The same synthetic trials were run for the factorial HMM
as were run for the switching HMM. The 2nd and 3rd order
NMF-MoM algorithms were run on the training sequence
for 1,000 iterations each. The Viterbi algorithm was then
applied to find the most likely state sequences for the test
data.

The decoding accuracy and training time of the algorithms
are shown in Figure 4. The 3rd order algorithm performs
better than the 2nd order one, but it also takes significantly
longer to run. This is due both to the increased amount of
moment information and to the increased complexity of the
updates.

We note that the ML-EM algorithm corresponding to the
multinomial FHMM is non-trivial to implement since a
closed-form expression for the mean updates cannot be
found. These updates can be replaced with a gradient de-
scent procedure. However, evaluating the objective func-
tion in this optimization step (i.e. data log likelihood) re-
quires a forward pass along the observation sequence. In
addition, we must consider JK possible state pairs in both
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Figure 4. Results of synthetic trials for the factorial HMM. Top:
Viterbi decoding accuracy. Bottom: Training time.

the E and M steps. These factors make the ML-EM al-
gorithm extremely computationally prohibitive and so we
have omitted a numerical comparison with it.

6. Conclusions
In this paper, we introduced a learning framework for time
series models such as the mixture of HMMs, switching
HMM, and factorial HMM. This involves computing ob-
servable moments and factorizing a non-negative moment
matrix/tensor in terms of the model parameters. This is
a general approach since we only require that the factor-
ization exists. The main advantage of the proposed NMF-
MoM algorithms is computational. Once moments are
computed, the learning procedure is independent of the
amount of data. We showed that for large datasets, this
advantage is substantial. This suggests that this approach
may be beneficial for on-line learning. At the same time,
we observed that NMF-MoM often performs just as well
as ML, if not better. As future work, it may also be ben-
eficial to consider other divergence measures besides the
KL criterion used in this work. Finally, we note that NMF-
MoM may reach local optima. It is important to explore
clever initialization strategies and methods for finding so-
lutions with uniqueness guarantees, as has been done in the
spectral learning community.
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