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® Introduction and Background

e Well known methods

Outline

e My research




Optimization

General form: rna}n{f(:c) cx € Q}

Selecting method according to f(x)

* Blackbox Optimization (BBO)

* Derivative Free Optimization (DFO)

e Gradient Descent
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* Analytical Solvers




Optimization

General form: m{gn{f(:c) cx € Q}

Selecting method according to f(x)

v

Only gives output values when gets some input queries

* Blackbox Optimization (BBO)
* Derivative Free Optimization (DFO) —— No direct access to derivatives but they exist and there is a level of smoothness

No regular form but there is a formulation to calculate the derivatives
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Formulating the problem and its constraints in specific forms
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* Analytical Solvers




Optimization

General form: m{gn{f(:c) cx € Q}

Selecting method according to f(x)

* Blackbox Optimization (BBO)

» Only if derivatives do not exist or are too costly to calculate

* Derivative Free Optimization (DFO)

e Gradient Descent
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* Analytical Solvers




Black Box Optimization

Function characteristics:

e Complexity: non-smooth, discontinuous, highly multimodal, noisy )
min{ f(x) : x € Q}
x

e Dimensionality: large search space

f(x)

e Separability: dependence between objective variables

Schematic of a Black Box [1]
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Black Box Optimization

Function characteristics:

e Complexity: non-smooth, discontinuous, highly multimodal, noisy )
min{ f(x) : x € Q}
x

e Dimensionality: large search space

f(x)

e Separability: dependence between objective variables

Schematic of a Black Box [1]
Real-world examples:

e Computer simulation

e Laboratory experiment

Goal: Find a good enough solution with minimum evaluations



BBO vs DFO

Black-box optimization

o Typically, no assumptions of any form of continuity, differentiability or smoothness on the function
o More on the heuristic side without mathematical support

o Main approaches are Evolutionary Strategies (ES) and Randomized based methods

Derivative free optimization
o More mathematically supported: prove of convergence and/or stopping criterion
o More on the deterministic side

o Direct search and Model-based



BBO Methods

Deciding BBO method

e Complexity and characteristics of f(x)

* Genetic Algorithms
® Cost of evaluation or evaluation budget

e Estimation of Distribution
Algorithm (EDA)

* Density model-based
Evolutionary Strategy (ES)

* Bayesian Optimization

Problem difficulty

* Simulated annealing

* Hill climbing
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Hill Climbing

* Genetic Algorithms

e Estimation of Distribution
Algorithm (EDA)

1(6,0,)

s NS 0 = N W

* Density model-based
Evolutionary Strategy (ES)

* Starts from a random point
* Randomly selects a neighbor
with better value

Problem difficulty

* Simulated annealing

* Hill climbing




Hill Climbing

* Genetic Algorithms

e Estimation of Distribution
Algorithm (EDA)

1(60,0,)

s NS 0 = N W

* Density model-based
Evolutionary Strategy (ES)

* Starts from a random point
* Randomly selects a neighbor
with better value

oblem difficulty

* Simulated annealing
Figure 5.9 Local maxima. Plateaus and
ridge situation for Hill Climbing
) ) e Hill climbin
* Highly prone to get stuck in g

local optimal!




Hill Climbing

* Genetic Algorithms

e Estimation of Distribution
Algorithm (EDA)

1(60,0,)

s NS 0 = N W

* Density model-based
Evolutionary Strategy (ES)

dblem difficulty

* Starts from a random point
* Randomly selects a neighbor
with better value

Doesn’t it sound
like gradient
descent?

* Simulated annealing
Figure 5.9 Local maxima. Plateaus and
ridge situation for Hill Climbing

e Hill climbi
* Highly prone to get stuck in ill climbing

local optimal!




Simulated Annealing
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* Genetic Algorithms

Start of search === .

High

e Estimation of Distribution

Global optimal
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* Simulated annealing

*  Accepts worse solutions with a
probability relative to a
temperature parameter

* Provides better exploration and
can jump out of local optimal

* Hill climbing
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Simulated Annealing

Startof search - -----------_ .

High

9

Energy

Local optimal

End of search

Low
Global optimal

Global Space

Accepts worse solutions with a
probability relative to a
temperature parameter
Provides better exploration and
can jump out of local optima

fX)

size of upward jump to escape from attracto

pai 1

size of temperature parameter T

dblem difficulty

Genetic Algorithms

Estimation of Distribution
Algorithm (EDA)

* Density model-based
Evolutionary Strategy (ES)

Simulated annealing

Hill climbing




Density Model-Based ES

Start of search ____.---------- R

High Generation 1 Generation 2 Generation 3

* Genetic Algorithms

Energy

Local optimal

e Estimation of Distribution
Algorithm (EDA)

End of search

Global optimal Generation 5 Generation 6

e * Density model-based
Evolutionary Strategy
(ES)
*  Population: Sampling a bunch of points
(individuals) from a distribution
* Evaluation: Calculating the function value * Simulated annealing
(Fitness) for each individual
+ Selection: selecting the fitter individuals * Hill climbing

* Updating density model
* Create next generation




Density Model-Based ES

Start of search ____.---------- R

High Generation 1 Generation 2 Generation 3

* Genetic Algorithms

Energy

Local optimal

e Estimation of Distribution
Algorithm (EDA)

End of search

Global optimal Generation 5 Generation 6

e * Density model-based
Evolutionary Strategy
(ES)
*  Population: Sampling a bunch of points
(individuals) from a distribution
* Evaluation: Calculating the function value * Simulated annealing
(Fitness) for each individual
+ Selection: selecting the fitter individuals * Hill climbing

* | Updating density model
* | Create next generation




(General ES)

* Genetic Algorithms

the best

e Estimation of Distribution

%0 @ the rest - ’ ; - >
% Algorithm (EDA)
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o = * Density model-based
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c Evolutionary Strategy
105 105 2 (ES)
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*  Population: Randomly selecting individuals S o

* Evaluation: Calculating the function value oo

(Fitness) for each individual * Simulated annealing
* Selection: selecting the fitter individuals
* Perturbing the fittest to create the next e Hill climbing

generation




Genetic Algorithms
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* Genetic Algorithms

c |olol1l1/o0/0/0]|0/| AfterMutation

e Estimation of Distribution

«— Population 3 .
Q [o|1[o]1|o[1]o[1]) Figure 1.2: Mutation phase illustrated S Algorlthm (EDA)
g O
Gene, Ch and Pop ‘.-': )
. . A 8 B * Density model-based
Figure 1.0: Population, Chromosomes and Genes + o) .
[o]o[oo[o[0]0]o] |11111|1|1|1|111|}m = Evolutionary Strategy (ES)
\ J Q
* Population: Randomly selecting individuals o T New Offspring
* Evaluation: Calculating the function value * Simulated annealing

(Fitness) for each individual
* Selection: selecting the fitter individuals Figure 1.1: lllustration of Cross-over phase
* Mutation and Cross-over the fittest to

create the next generation

* Hill climbing




Genetic Algorithms: Symbolic Regression
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Mutation * Density model-based
Evolutionary Strategy (ES)
® 0 0 @

* Population: Randomly selecting individuals

* Genetic Algorithms

e Estimation of Distribution
Algorithm (EDA)

Dy dpx®

* Evaluation: Calculating the function value 2y + 2x2 * Simulated annealing
(Fitness) for each individual Cross-over
* Selection: selecting the best individuals e Hill climbing

¢  Mutation and Cross-over the fittest to
create the next generation




My Research

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) Example from Density Model-Based ES

Generation 1 Generation 2 Generation 3 Generation 4 Generation 5 Generation 6

How to make it more sample efficient?
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® Arbitrary choice of distribution limits performance

>

ES iterations
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My Research

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) Example from Density Model-Based ES

Generation 1 Generation 2 Generation 3 Generation 4 Generation 5 Generation 6 - a

X global minimum

How to make it more sample efficient?

e Arbitrary choice of distribution limits performance ———— Flexible density model

e Starting from scratch and withdrawing gained knowledge —» Meta-learning

What we propose ’ .

»

ES iterations

e Normalizing Flows (NF) to model the density

® Meta-optimization to reuse the costly information gained in previous runs



My Research

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) Example from Density Model-Based ES
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How to make it more sample efficient? “ A

Generation 1 Generation 2 Generation 3 Generation 4 Generation 5 Generation 6
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e Arbitrary choice of distribution limits performance ———— Flexible density model

e Starting from scratch and withdrawing gained knowledge —» Meta-learning

What we propose

>

ES iterations

e Normalizing Flows (NF) to model the density




Normalizing Flows

A family of Probabilistic Generative Models: learn p,.(x) over X from observations




Normalizing Flows

A family of Probabilistic Generative Models: learn p,.(x) over X from observations
e Structurally restricted Generative Neural Network: bijective Generative NN
e Highly expressive
e Efficient sampling
e Exact and efficient density evaluation

e Based on change of variable formula



Normalizing Flows

A family of Probabilistic Generative Models: learn p,.(x) over X from observations

e Structurally restricted Generative Neural Network: bijective Generative NN If you want to know more...
: : () p=(2)
e Highly expressive .
h(z) = «3 ‘
e Efficient sampling ) V
B i (2)

e Exact and efficient density evaluation

Volume correction

e Based on change of variable formula
pa(@) = p: (@)-

Flow / Bijection

Invertible
Differentiable

Efficiently computable detDh(x)




NF + Density Model-Based ES

Model the density using Normalizing Flows

e More flexible and expressive

® Accelerates the search

Fixed Gaussian Normalizing Flows

B global minimum
© gaussian samples
e gnnsamples




Conclusion

® Choice of method depends on the optimization problem

® We never use BBO and DFO if derivatives exist and are feasible to calculate!
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. L min{ f(z) : v € Q}
e Choice of optimization method depends on the problem case v
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e Function evaluations are costly (financially, computationally, time-wise...)
® General goal is to find a good enough solution with minimum function evaluations

® Genetic Algorithms, Evolutionary strategies and their variants are among the most popular and promising methods in this field



Conclusion

. L min{ f(z) : v € Q}
e Choice of optimization method depends on the problem case v
f(x)
e We never use BBO and DFO if derivatives exist and are feasible to calculate!

. . . . . Sch icof a Black Box [1
e BBO s the study of algorithms that assume the objectives are given by Black Boxes chematicofa Black Box 1)

e Function evaluations are costly (financially, computationally, time-wise...)
® General goal is to find a good enough solution with minimum function evaluations

® Genetic Algorithms, Evolutionary strategies and their variants are among the most popular and promising methods in this field

° My research is cool! :D
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