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Outline

● Introduction and Background

● Well known methods

● My research
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Optimization

Selecting method according to 𝑓(𝑥)
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• Blackbox Optimization (BBO)

• Derivative Free Optimization (DFO)

• Gradient Descent

• Analytical Solvers

General form:



Optimization

Selecting method according to 𝑓(𝑥)
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• Blackbox Optimization (BBO)

• Derivative Free Optimization (DFO)

• Gradient Descent

• Analytical Solvers

General form:

Only gives output values when gets some input queries

No direct access to derivatives but they exist and there is a level of smoothness

No regular form but there is a formulation to calculate the derivatives

Formulating the problem and its constraints in specific forms



Optimization

Selecting method according to 𝑓(𝑥)
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• Blackbox Optimization (BBO)

• Derivative Free Optimization (DFO)

• Gradient Descent

• Analytical Solvers

General form:

Only if derivatives do not exist or are too costly to calculate



Black Box Optimization
Function characteristics:

● Complexity: non-smooth, discontinuous, highly multimodal, noisy

● Dimensionality: large search space

● Separability: dependence between objective variables

Real-world examples:

● Computer simulation

● Laboratory experiment

Goal: Find a good enough solution with minimum evaluations
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Schematic of a Black Box [1]

[1] C. Audet, W. Hare, Derivative-Free and Blackbox Optimization, 1st ed. 2017.
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BBO vs DFO
Black-box optimization

o  Typically, no assumptions of any form of continuity, differentiability or smoothness on the function

o More on the heuristic side without mathematical support

o Main approaches are Evolutionary Strategies (ES) and Randomized based methods

Derivative free optimization

oMore mathematically supported: prove of convergence and/or stopping criterion

oMore on the deterministic side

o Direct search and Model-based

9



BBO Methods
Deciding BBO method

● Complexity and characteristics of 𝑓(𝑥)

● Cost of evaluation or evaluation budget

Model-based BBO

● View optimization as a series of incremental updates of a model

o Gaussian process

o Probabilistic distribution

● Initialize the model

● Sample candidate solutions

● Evaluate the samples and update the model
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• Genetic Algorithms

• Estimation of Distribution 
Algorithm (EDA)

• Density model-based 
Evolutionary Strategy (ES)

• Bayesian Optimization

• Simulated annealing

• Hill climbing
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• Genetic Algorithms

• Estimation of Distribution 
Algorithm (EDA)

• Density model-based 
Evolutionary Strategy (ES)

• Bayesian Optimization

• Simulated annealing
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Hill Climbing
Deciding BBO method

● Complexity and characteristics of 𝑓(𝑥)

● Cost of evaluation or evaluation budget

Model-based BBO

● View optimization as a series of incremental updates of a model

o Gaussian process

o Probabilistic distribution

● Initialize the model

● Sample candidate solutions

● Evaluate the samples and update the model
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• Genetic Algorithms

• Estimation of Distribution 
Algorithm (EDA)

• Density model-based 
Evolutionary Strategy (ES)

• Simulated annealing

• Hill climbing

• Starts from a random point
• Randomly selects a neighbor 

with better value

https://umu.to/blog/2018/06/29/hill-climbing-irl

https://www.slideshare.net/JismyKJose/heuristc-search-70129411
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• Genetic Algorithms

• Estimation of Distribution 
Algorithm (EDA)

• Density model-based 
Evolutionary Strategy (ES)

• Simulated annealing

• Hill climbing

• Starts from a random point
• Randomly selects a neighbor 

with better value

• Highly prone to get stuck in 
local optima!

https://umu.to/blog/2018/06/29/hill-climbing-irl

https://www.slideshare.net/JismyKJose/heuristc-search-70129411



Hill Climbing
Deciding BBO method

● Complexity and characteristics of 𝑓(𝑥)

● Cost of evaluation or evaluation budget

Model-based BBO

● View optimization as a series of incremental updates of a model

o Gaussian process

o Probabilistic distribution

● Initialize the model

● Sample candidate solutions

● Evaluate the samples and update the model
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• Genetic Algorithms

• Estimation of Distribution 
Algorithm (EDA)

• Density model-based 
Evolutionary Strategy (ES)

• Simulated annealing

• Hill climbing

• Starts from a random point
• Randomly selects a neighbor 

with better value

• Highly prone to get stuck in 
local optima!

Doesn’t it sound 
like gradient 

descent?

https://umu.to/blog/2018/06/29/hill-climbing-irl

https://www.slideshare.net/JismyKJose/heuristc-search-70129411



Simulated Annealing
Deciding BBO method

● Complexity and characteristics of 𝑓(𝑥)

● Cost of evaluation or evaluation budget

Model-based BBO

● View optimization as a series of incremental updates of a model

o Gaussian process

o Probabilistic distribution

● Initialize the model

● Sample candidate solutions

● Evaluate the samples and update the model
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• Genetic Algorithms

• Estimation of Distribution 
Algorithm (EDA)

• Density model-based 
Evolutionary Strategy (ES)

• Simulated annealing

• Hill climbing
• Accepts worse solutions with a 

probability relative to a 
temperature parameter

• Provides better exploration and 
can jump out of local optima!

https://www.researchgate.net/figure/Principle-of-the-simulated-annealing-algorithm_fig5_360434054



Simulated Annealing
Deciding BBO method

● Complexity and characteristics of 𝑓(𝑥)

● Cost of evaluation or evaluation budget

Model-based BBO

● View optimization as a series of incremental updates of a model

o Gaussian process

o Probabilistic distribution

● Initialize the model

● Sample candidate solutions

● Evaluate the samples and update the model
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• Genetic Algorithms

• Estimation of Distribution 
Algorithm (EDA)

• Density model-based 
Evolutionary Strategy (ES)

• Simulated annealing

• Hill climbing
• Accepts worse solutions with a 

probability relative to a 
temperature parameter

• Provides better exploration and 
can jump out of local optima

https://www.researchgate.net/figure/Principle-of-the-simulated-annealing-algorithm_fig5_360434054

https://www.researchgate.net/figure/Simulated-Annealing-if-the-temperature-is-very-low-wrt-the-jump-size-SA-risks-a_fig4_30531067



Density Model-Based ES
Deciding BBO method

● Complexity and characteristics of 𝑓(𝑥)

● Cost of evaluation or evaluation budget

Model-based BBO

● View optimization as a series of incremental updates of a model

o Gaussian process

o Probabilistic distribution

● Initialize the model

● Sample candidate solutions

● Evaluate the samples and update the model
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• Genetic Algorithms

• Estimation of Distribution 
Algorithm (EDA)

• Density model-based 
Evolutionary Strategy 
(ES)

• Simulated annealing

• Hill climbing

• Population: Sampling a bunch of points 
(individuals) from a distribution

• Evaluation: Calculating the function value 
(Fitness) for each individual

• Selection: selecting the fitter individuals
• Updating density model
• Create next generation

"CMA-ES." wikipedia.org. https ://en.wikipedia.org/wiki/CMAES (accessed Sep. 25,2022)



Density Model-Based ES
Deciding BBO method

● Complexity and characteristics of 𝑓(𝑥)

● Cost of evaluation or evaluation budget

Model-based BBO

● View optimization as a series of incremental updates of a model

o Gaussian process

o Probabilistic distribution

● Initialize the model

● Sample candidate solutions

● Evaluate the samples and update the model
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• Genetic Algorithms

• Estimation of Distribution 
Algorithm (EDA)

• Density model-based 
Evolutionary Strategy 
(ES)

• Simulated annealing

• Hill climbing

• Population: Sampling a bunch of points 
(individuals) from a distribution

• Evaluation: Calculating the function value 
(Fitness) for each individual

• Selection: selecting the fitter individuals
• Updating density model
• Create next generation

"CMA-ES." wikipedia.org. https ://en.wikipedia.org/wiki/CMAES (accessed Sep. 25,2022)



(General ES)
Deciding BBO method

● Complexity and characteristics of 𝑓(𝑥)

● Cost of evaluation or evaluation budget

Model-based BBO

● View optimization as a series of incremental updates of a model

o Gaussian process

o Probabilistic distribution

● Initialize the model

● Sample candidate solutions

● Evaluate the samples and update the model
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• Genetic Algorithms

• Estimation of Distribution 
Algorithm (EDA)

• Density model-based 
Evolutionary Strategy 
(ES)

• Simulated annealing

• Hill climbing

• Population: Randomly selecting individuals
• Evaluation: Calculating the function value 

(Fitness) for each individual
• Selection: selecting the fitter individuals
• Perturbing the fittest to create the next 

generation

"CMA-ES." wikipedia.org. https ://en.wikipedia.org/wiki/CMAES (accessed Sep. 25,2022)



Genetic Algorithms
Deciding BBO method

● Complexity and characteristics of 𝑓(𝑥)

● Cost of evaluation or evaluation budget

Model-based BBO

● View optimization as a series of incremental updates of a model

o Gaussian process

o Probabilistic distribution

● Initialize the model

● Sample candidate solutions

● Evaluate the samples and update the model
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• Genetic Algorithms

• Estimation of Distribution 
Algorithm (EDA)

• Density model-based 
Evolutionary Strategy (ES)

• Simulated annealing

• Hill climbing

• Population: Randomly selecting individuals
• Evaluation: Calculating the function value 

(Fitness) for each individual
• Selection: selecting the fitter individuals
• Mutation and Cross-over the fittest to 

create the next generation

https://www.kindsonthegenius.com/basics-of-genetic-algorithm-ga-explained-in-simple-terms/



Genetic Algorithms: Symbolic Regression
Deciding BBO method

● Complexity and characteristics of 𝑓(𝑥)

● Cost of evaluation or evaluation budget

Model-based BBO

● View optimization as a series of incremental updates of a model

o Gaussian process

o Probabilistic distribution

● Initialize the model

● Sample candidate solutions

● Evaluate the samples and update the model
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• Genetic Algorithms

• Estimation of Distribution 
Algorithm (EDA)

• Density model-based 
Evolutionary Strategy (ES)

• Simulated annealing

• Hill climbing

• Population: Randomly selecting individuals
• Evaluation: Calculating the function value 

(Fitness) for each individual
• Selection: selecting the best individuals
• Mutation and Cross-over the fittest to 

create the next generation

Mutation

Cross-over

https://www.researchgate.net/publication/10726448_Dynamics_of_the_evolution_of_learning_algorithms_by_selection?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ



My Research
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) Example from Density Model-Based ES

Our focus:

● Flexible density model: more efficiently lead the search to the optima

● Meta-optimization: reuse the costly information gained in previous runs

22
"CMA-ES." wikipedia.org. https ://en.wikipedia.org/wiki/CMAES (accessed Sep. 25,2022)

How to make it more sample efficient?

● Arbitrary choice of distribution limits performance

● Starting from scratch and withdrawing gained knowledge

L. Faury, C. Calauzenes, O. Fercoq, and S. Krichen, "Improving Evolutionary Strategies with Generative Neural Networks," arXiv preprint arXiv :1901.11271v1, 2019.
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My Research
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) Example from Density Model-Based ES

Our focus:

● Flexible density model: more efficiently lead the search to the optima

● Meta-optimization: reuse the costly information gained in previous runs
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How to make it more sample efficient?

● Arbitrary choice of distribution limits performance

● Starting from scratch and withdrawing gained knowledge

L. Faury, C. Calauzenes, O. Fercoq, and S. Krichen, "Improving Evolutionary Strategies with Generative Neural Networks," arXiv preprint arXiv :1901.11271v1, 2019.

Flexible density model

Meta-learning

What we propose

● Normalizing Flows (NF) to model the density

● Meta-optimization to reuse the costly information gained in previous runs 😲



Normalizing Flows

28

A family of Probabilistic Generative Models: learn 𝑝𝑥(𝑥) over 𝑋 from observations

● Structurally restricted Generative Neural Network: bijective Generative NN

● Highly expressive

● Efficient sampling

● Exact and efficient density evaluation

● Based on change of variable formula

Volume correction

Flow / Bijection

Invertible
Differentiable
Efficiently computable 𝑑𝑒𝑡𝐷ℎ(𝑥)



Normalizing Flows
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A family of Probabilistic Generative Models: learn 𝑝𝑥(𝑥) over 𝑋 from observations

● Structurally restricted Generative Neural Network: bijective Generative NN

● Highly expressive

● Efficient sampling

● Exact and efficient density evaluation
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Normalizing Flows
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A family of Probabilistic Generative Models: learn 𝑝𝑥(𝑥) over 𝑋 from observations

● Structurally restricted Generative Neural Network: bijective Generative NN

● Highly expressive

● Efficient sampling

● Exact and efficient density evaluation

● Based on change of variable formula
Volume correction

Flow / Bijection

Invertible
Differentiable
Efficiently computable 𝑑𝑒𝑡𝐷ℎ(𝑥)

If you want to know more…



NF + Density Model-Based ES
Model the density using Normalizing Flows

● More flexible and expressive

● Accelerates the search

31

Fixed Gaussian Normalizing Flows

L. Faury, C. Calauzenes, O. Fercoq, and S. Krichen, "Improving Evolutionary Strategies with Generative Neural Networks," arXiv preprint arXiv :1901.11271v1, 2019.



Conclusion
● Choice of method depends on the optimization problem

● We never use BBO and DFO if derivatives exist and are feasible to calculate!

● BBO is the study of algorithms that assume the objectives are given by Black Boxes

● Function evaluations are costly (financially, computationally, time-wise…)

● General goal is to find a good enough solution with minimum function evaluations

● Genetic Algorithms, Evolutionary strategies and their variants are among the most popular and promising methods in this field

● My research is cool! :D

32
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Schematic of a Black Box [1]

[1] C. Audet, W. Hare, Derivative-Free and Blackbox Optimization, 1st ed. 2017.
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Schematic of a Black Box [1]

[1] C. Audet, W. Hare, Derivative-Free and Blackbox Optimization, 1st ed. 2017.
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