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What is this class?

� What do you think this class is?

� Is it a Machine Learning class?

� Is it a Signal Processing class?

� What is Machine Learning?

� What is Signal Processing?
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Signal Processing

� Here’s the wikipedia definition:

� Hm, this kinda sounds like machine learning.
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How are signals different than data?

� So, signals are just data?

� Yeah-(ish).

� Why are we calling them
signals then?

� When we speak of signals,
we refer more to structured
data. (Order matters)

� And, saying ‘signals’, ‘signal
processing’ implies a more
Electrical Engineering way
to the approach.
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Example Signals

� Images, Audio/Speech

� Brains

� Financial Time Series, Graphs

� More?
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But why bother? Isn’t ML what’s hip now?

� Yes, ML is extremely popular, and we should embrace that.

� But, traditional ML isn’t very friendly for signals.

� What about signal processing, doesn’t that cover what we need?

I No!

I Traditional SP is typically NOT statistical, doesn’t handle the
statistical patterns of the signal well.

I Traditional SP: Filtering, acquision, analog-digital-analog conversion,
transmission

I There is statistical signal processing also, but it doesn’t go much
beyond adaptive filtering.
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MLSP: Machine Learning for Signal
Processing

� How to build systems that would work with sequences and solve
machine intelligence tasks on them?

I Various tasks with Speech and Audio: ASR, Speech Enhancement,
Music Transcription...

I Financial Time Series Prediction
I Understanding Biomedical Sequences
I Generating Videos
I More...
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Speech and Audio Modeling

� Speech Enhancement

t t

Noisy Enhanced

model

� Speech Recognition

t

I WORK ON SPEECH
model
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https://sourceseparationresearch.com/static/example_wham16k.wav
https://sourceseparationresearch.com/static/enhanced_wham16k.wav
https://huggingface.co/speechbrain/asr-crdnn-rnnlm-librispeech


Speech and Audio Modeling

� Speech Separation

Separator

Mixture
Estimated Source 1

Estimated Source 2

� Text-to-Speech

t

I WORK ON SPEECH
model
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https://sourceseparationresearch.com/static/presentation/item4_mixture.wav
https://huggingface.co/speechbrain/tts-tacotron2-ljspeech


Speech and Audio Modeling

� Speaker Diarization

t

Who spoke when?
model

� Neural Network Explanation

Recording Explanation
Classifier says DOG

� Other problems: Generating Deep fakes, Detecting deep fakes,
Music Source Separation, Music Transcription, Sound Event
Detection/Classification...
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https://piqinter.github.io/samples/mix1/mix.wav
https://piqinter.github.io/samples/mix1/piq.wav


Speech and Audio Modeling

� Field with huge economic value & job opportunities,

I Speech Recognition (e.g. Siri)
I Speech Enhancement (e.g. Google meet, Zoom)
I Text-to-Speech
I Speaker Verification, Spoof Detection(Banks)
I Speaker Diarization for Meeting Analysis (Nuance, Microsoft)
I Source Separation (e.g. Beatles Rock Band, Meeting Analysis)
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Other real-life applications

� Face recognition

� Brain-machine interfaces

� Real time bio-signal analysis, learning generative models for
bio/medical signals, condition monitoring (mining machines,
production machines), Stock market, many more..
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About this class

� This is class heavy on practice. How do we make things that work?

� We do not do deep theory in this class.

I We will not prove things.
I We will not stay Keras level either.
I Our goal is to give useful insights, be useful.

� We go fast, our typical lecture could be a class.
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Syllabus: Basics

� Linear Algebra
I This class

� Probability
I Probability Calculus, Random Variables, Bayesian vs Frequentist

Principles

� Signal Processing
I Signal Representations, Fourier Transform, Sampling
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Syllabus: Machine Learning

� Decompositions
I PCA, NMF, Linear Regression, Tensor Decompositions

� Classification
I Logistic Regression, Maximum Margin, Kernels, Boosting

� Deep Learning
I Deep Learning Firearms, Pytorch, Julia

� Optimization
I Convex optimization
I Gradient Descent and friends
I Non-Convex optimization

� Clustering
I Kmeans, Spectral Clustering, DBScan

� Unsupervised Non-linear learning
I Manifold Learning, Deep Generative Models

� Time Series Models
I HMMs, Kalman Filters
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Syllabus: Fun Stuff

� Speech Recognition

� Speech Enhancement/Separation

� Text-to-speech

� Representation Learning Methods for Sequences

� Generative Models for Sequences

� Text prompted models (text prompted image /
sound generation)

� Neural Network Interpretation Methods

� Graph Signal Processing / ML
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Evaluation

� Homeworks (45%)

I 3 homeworks, you need to work on these alone!
I I would like you to typeset math in LATEX. So if you don’t know it,

start learning it!
I Do not use Generative AI, if you want to learn!
I You will need to code. But we will reward good quality presentation

of results.

� Weekly Labs (10%)

I You will work on hands-on application of the things we talk about.
TAs will lead the online sessions.

� Final Project (45%)

17 / 66



Final project

� This will be a mini-conference.

� Each paper will receive 3 peer-reviews (from you). We will evaluate
the quality of your reviews (5% of your 45% project grade).

� You will work in teams of 2-3 (no more, no less)

� We will ask who did what in the project. So no freeriding!

� Start making friends!

� Mid-October, proposals are due

� Last 1-2 weeks, paper deadline.

I We will accept all the papers, and you will make a presentation.
I However, you need to do a good job to get a good grade.
I If it’s a good paper, we can also work together to submit it to a real

conference! We can work together towards that.
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Communications

� We will have teams page where will have a forum, and you will
submit your assignments.

� Be active on the forum, ask questions. Find friends for the project.

� We will do the announcements on teams, so sign-up for it!

� Check https://ycemsubakan.github.io/mlsp.html for class
material.

19 / 66
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Instructor: Who am I?

� Instructor: Cem Subakan

I cem.subakan@ift.ulaval.ca
I Assistant Prof. in Computer Science,

Mila Associate Academic Member.
I Just send me a message you if you want to meet.

� I work on machine learning for Speech and Audio.

I Interpretability
I Speech Separation & Enhancement
I Multi-Modal Learning
I Continual Learning
I Probabilitic Machine/Deep Learning

� I review for many major conferences, involved in the organization of
several MLSP workshops.

� I have written a lot of papers involving MLSP topics, worked with
many people, also saw the industry side of things.
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Who are the TAs?

� Sara Karami

I sara.karami.1@ulaval.ca

� Mathieu Bazinet

I mabaz21@ulaval.ca

� TAs will hold the online lab sessions (Fridays 15h00-16h50)

� The office hours will be on fridays (the second half of the lab
sessions)

� Advice:

I If you need help do not bombard them at the last minute. Seek help
early.
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Who are you?

� Name, department, grad/undergrad?
I What are your interests?
I Hint: Take notes, and contact the person if something picks your

interest.
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Table of Contents

Linear Algebra Refresher
Basics
Array Manipulation
More linear algebraic concepts
Decompositions

23 / 66



Table of Contents

Linear Algebra Refresher
Basics
Array Manipulation
More linear algebraic concepts
Decompositions

24 / 66



Scalars, Vectors, Matrices, Tensors

� Scalar, x ,
just a
number.

� Vector, x , of
length L

x =

x1...
xL


� Matrix, x of size L×M

x =

x1,1 . . . x1,M
...

...
...

xL,1 . . . xL,M


=
[
x1 . . . xM

]
� Tensor, x of size L×M × Nx1,1,1 . . . x1,M,1

...
...

...
xL,1,1 . . . xL,M,1


. . .

. . .

x1,1,N . . . x1,M,N

...
...

...
xL,1,N . . . xL,M,N


x =
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Scalars, Vectors, Matrices, Tensors

� Scalar, x ,
just a
number.
0th
order
tensor.

� Vector, x , of
length L

x =

x1...
xL


1th order
tensor.

� Matrix, x of size L×M

x =

x1,1 . . . x1,M
...

...
...

xL,1 . . . xL,M


=
[
x1 . . . xM

]
2nd order tensor.

� Tensor, x of size L×M × Nx1,1,1 . . . x1,M,1

...
...

...
xL,1,1 . . . xL,M,1


. . .

. . .

x1,1,N . . . x1,M,N

...
...

...
xL,1,N . . . xL,M,N


x =

3rd order tensor.
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How do we represent signals as these?

� Sounds, Time Series

x>=
[
x1 . . . xL

]
=

� Images

X=

x1,1, . . . x1,M
...

...
...

xL,1 . . . xL,M

 =

� Videos as tensors.. and so on..
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Index/Array Notation

� We need good ways to communicate operations on these objects.

� Option 1: Index Notation

I Micro-level and detailed, but not very compact

� Option 2: Array Notation

I Compact but abstracts away the details

28 / 66



Index Notation

� We define the elements in index form.
I Element-wise multiplication:

ci = aibi

I Inner product of vectors

c =
∑
i

aibi

I Outer product of vectors
cij = aibj

I Matrix-vector product

ci =
∑
j

Aijbj

I Matrix multiplication

Cik =
∑
j

AijBjk

I Some random tensor operations

Cim =
∑
j,l,k

AijlkBmjlk , c =
∑
i,j

AijBij
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Array Notation

� We define the elements in index form.
I Element-wise multiplication:

c = a� b, c ∈ RL

I Inner product of vectors

c =< a, b >= a>b, c ∈ R

I Outer product of vectors

c = a⊗ b = ab>, c ∈ RL×M

I Matrix-vector product

c = Ab, c ∈ RL

I Matrix multiplication

C = AB, C ∈ RL×M

I Some random tensor operations

C = A×jlk B, C ∈ RL×M c = A×i,j B, c ∈ R

30 / 66



Index vs Array Notation

� Index Notation is very specific, not ambigous

� But the array notation makes it possible to manipulate the
operations with ease. (E.g. gradient calculations)
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The dot product

� c =
∑

i aibi = a>b = ‖a‖‖b‖cosθ

x

y

θ

� Note that,

θ = arccos

(
a>b

‖a‖‖b‖

)
� So, dot product is a great tool to measure similarity.
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Matrix-Vector Product

� c = Ab, or ci =< Ai,:, c >=
∑

j Aijcj . A is a matrix, b is vector. c
is a what?

� The resulting c vector is a linear combination of columns of c .
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Matrix-Vector Product - 2nd interpretation

� It’s a series of dot products.

� c = Ab, or ci =< Ai,:, c >=
∑

j Aijcj . A is a matrix, b is vector. c
is a what?

� The resulting c vector is a linear combination of columns of c .
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Matrix-Matrix Product

� It’s a series of Matrix-vector products. (or series of inner products
on a grid)

� C = AB, or Cij =
∑

k AikCkj , or Cij = A>i,:C:,j

�

C =

A>1,:A>2,:
A>3,:

 [B:,1 B:,2 B:,3

]
=

A>1 B1 A>1 B2 A>1 B3

A>2 B1 A>2 B2 A>2 B3

A>3 B1 A>3 B2 A>3 B3



� Not any pair of two matrices can be multiplied. You need to have
equal number of columns from A, number rows from B.

� Master this, it will help! This has to become muscle memory.
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Visualize the matrix product
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Visualize the matrix product
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Multiplying from the other side
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Multiplying from the other side

Reversing on the horizontal axis
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Einstein Notation

� Let’s go beyond matrices!

� Ci,j =
∑

l,k Ai,l,kBl,j,k

� How about the Einstein notation?

Ai,l,k ,wl,j,k → Ci,j

� You match the indices on the left. Whatever index that does not
appear on the right gets summed over.

� Can you express the matrix multiplication operation with Einstein
notation?

� Ai,l ,Bl,j → Ci,j
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Let’s do more Einstein stuff

� Element-wise multiplication:

c = a� b, c ∈ RL

� Inner product of vectors

c =< a, b >= a>b, c ∈ R

� Outer product of vectors

c = a⊗ b = ab>, c ∈ RL×M
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Let’s do more Einstein stuff

� Matrix-vector product

c = Ab, c ∈ RL

� Matrix multiplication

C = AB, C ∈ RL×M

� Some random tensor operation

C = A×jlk B, C ∈ RL×M c = A×i,j B
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Implementing Einstein products is easy in
Python

� Batch Matrix Multiplication

AbijBbjk → Cbik

C = t o r c h . e insum ( ’ b i j , b jk−>bik ’ , A , B)
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Application of Tensor Operations

� RGB images

� Let us apply a matrix multiplication to each channel, and then
average over the channels. 42 / 66



Application of Tensor Operations

� In Index Notation

Cij =
∑
k,c

Bik︸︷︷︸
Matrix

Akjc︸︷︷︸
image

wc︸︷︷︸
WtOverCh.

� In Einstein Notation:

Bik ,Akjc ,wc → Cij

� Notice that this notation can handle multilinear operations.
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Application of Tensor Operations

� First step
Bik ,Akjc → Tijc

� Second step
Tijcwc → Cij
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Let’s also see some reshaping operations

� Vectorization:

vec

([
a11 a12
a21 a22

])
=


a11
a21
a12
a22


� The ‘Diag’ Operation:

Diag
([
a1 a2

])
=

[
a1 0
0 a2

]
� The ‘Reshape’ Operation:

Reshape32

([
a11 a12 a13
a21 a22 a23

])
=

a11 a22
a21 a13
a12 a23


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Kronecker Product

� It’s sort of an outer product but has a specific shape,

A⊗ B =

[
a11B a12B
a21B a22B

]

� Let’s visualize this,

[
1 4
0 2

]
⊗ =
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Why Bother?

� Sometimes matrix algebra is compact and powerful.

� For instance, check this out:

C =
(

diag
([
w1 w2 w3

])
⊗ I ⊗ I

)
vec(A)

� This is equivalent to:
Aijc ,wc → Cij

� The matrix form could be helpful when calculating gradients, and
coming up with efficient implementations.

� Einsum is not as optimized as matrix multiplication.
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Linear Algebra Refresher
Basics
Array Manipulation
More linear algebraic concepts
Decompositions
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Matrix inverse

� Let’s think about a linear system,

Ax =b

→ A−1Ax =x = A−1b

� Is A−1 always defined?

� First, A needs to be square.

� Second, it needs to be full rank. Columns of A need to be linearly
independent.
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Matrix pseudoinverse

� Let’s have the same linear system, but with a rectangular A matrix,

Ax =b

� We can not inverse A. However we can multiply from the left with
A>,

A>Ax =A>b

→ (A>A)−1A>Ax = x = (A>A)−1A>︸ ︷︷ ︸
:=A†

b

� A† := (A>A)−1A>. This is known as the pseudo inverse.

� This is essentially least squares. (We will show that later)
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Four Fundamental Subspaces in Linear Algebra

Image Taken from Gilbert Strang’s ‘Introduction to Linear Algebra’ book.
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Norms, trace

� l2 norm: ‖x‖2 =
√∑

j x
2
j . Also known as Euclidean Norm.

� l1 norm: ‖x‖1 =
∑

j |xj |.

� lp norm: ‖x‖p = p
√∑

j |xj |p.

� tr(A) =
∑

i Aii , it’s basically the sum of diagonal elements.
Do not underestimate this.

� Frobenius norm: ‖X‖F =
√∑

i

∑
j |Xij |2 =

√
tr(XX>)
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Matrix Calculus

� df (x)
dx , gradient of a scalar wrt to a scalar is a scalar.

dx2

dx
= 2x

� Gradient of a scalar function wrt to a vector is a vector.

db>Ax

dx
= A>b

� Gradient of a vector wrt to a vector is a matrix

dAx

dx
= A>

� Gradient of a vector wrt to a matrix is ?

� Index notation helps to derive these. Otherwise you can just pattern
match from the matrix cookbook.

� We are just giving an idea here with simple examples. We will see
these more in real action later. (hint: backprop)
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Eigenvalues / Eigenvectors

� Ax = λx
x

� Note that x doesn’t change its direction.

� Eigenvectors are ‘characteristic’ directions for the system described
by A.
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Finding the Eigenvectors

� The ‘Linear Algebra Class Way’:

� Let’s have this matrix

A =

[
0.8 0.4
0.2 0.6

]
� Calculate the determinant (why?)

det(A− λI ) =

∣∣∣∣0.8− λ 0.4
0.2 0.6− λ

∣∣∣∣ = λ2 − 1.4λ+ 0.40

� Solve the characteristic equation for 0. λ1 = 1, λ2 = 0.4

� Then we find vectors in the null space of A− λI

� A− I =

[
−0.2 0.4
0.2 −0.4

]
v = 0, find a non-zero vector v such that

the equation is satisfied. v =

[
2
1

]
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Finding the Eigenvectors

� For big matrices the method is untractable.

� But eigenvectors are attractor points. The recursion vk+1 = Avk
‖Avk‖

gets you the eigenvectors.

� Here are the power iterations starting from v0 =

[
1
0

]
.

� To get all the eigenvectors we can deflate the matrix. Just subtract
v , and repeat the process..
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Ok, but how is this a decomposition?

� AV = VΛ, where columns of V are the eigenvectors, and Λ is a
diagonal matrix with eigenvalues on the diagonal.

� And here’s the decomposition A = VΛV−1.

� But notice that this decomposition is only defined for square
matrices.
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Singular Value Decomposition

� Let us given a matrix of size X in RM×N .

� X = UΣV>, U ∈ RM×M and is orthogonal U>U = I , Σ ∈ RM×N is
a matrix with non-zero elements on the main diagonal, and
V ∈ RN×N , and is orthonal VV> = I .

XM×N = UM×M ΣM×N

V>N×N

� An alternative way of viewing it is X =
∑M

k=1 σkukv
>
k . Note that we

can cut the sum short, and keep the biggest singular values! (set

X =
∑K

k=1 σkukv
>
k , K ≤ M)

XM×N = U
Σ V>

59 / 66



Singular Value Decomposition

� Let us given a matrix of size X in RM×N .

� X = UΣV>, U ∈ RM×M and is orthogonal U>U = I , Σ ∈ RM×N is
a matrix with non-zero elements on the main diagonal, and
V ∈ RN×N , and is orthonal VV> = I .

XM×N = UM×M ΣM×N

V>N×N

� An alternative way of viewing it is X =
∑M

k=1 σkukv
>
k . Note that we

can cut the sum short, and keep the biggest singular values! (set

X =
∑K

k=1 σkukv
>
k , K ≤ M)

XM×N = U
Σ V>

59 / 66



Relationship between SVD and Eigenvalue
decomposition

� X = UΣV>, this is SVD.

� XX> = UΣV>V︸ ︷︷ ︸
I

Σ>U> = UΣ2U>.

� Singular vectors U of X , are the eigenvectors of XX>.

� Singular values σk of X , are the square root of eigenvalues of XX>.

� For positive semi-definite matrices, SVD and eigenvalue
decomposition are equivalent.
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Geometric Interpretation of SVD

A UΣ U I

right mul. V right mul. 1/Σ right mul. U>
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List of Decompositions

� LU decomposition: X = LU, L is lower triangular, U is upper
triangular.

� QR decomposition: X = QR, Q is a matrix with orthonormal
columns, R is an upper triangular matrix.

� Eigenvalue decomposition: X = UΛU−1, columns of U are
eigenvalues of X , which is square (diagonalizable) matrix.

� Singular value decomposition: X = UΣV>, columns of U, and V
have orthonormal columns. Defined for any matrix.

� There’s more, e.g. Cholesky, NMF, CR, ICA, ...
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List of special type of matrices we’ll see in
this class

� Rotation matrices

� Markov matrices (Probability Transition Matrices)

� Transform matrices (Fourier Transform, Convolution,...)

� Covariance matrices (Define a Multivariable Random Variable)

� Adjacency matrices (Define a Graph)
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Recap

� We saw how data/signals can be represented.

� We saw how the data can be manipulated. (Vector, Matrix, Tensor
Operations)

� We took a glimpse into how we can decompose signals.

� We gave a crude summary into what we need from Linear Algebra.
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Recommended Reading

� Gilbert Strang, Introduction to Linear Algebra,
https://ocw.mit.edu/courses/

18-06-linear-algebra-spring-2010/video_galleries/

video-lectures/,
https:

//math.mit.edu/~gs/linearalgebra/ila5/indexila5.html

� Trefethen and Bau, Numerical Linear Algebra,
https://people.maths.ox.ac.uk/trefethen/text.html

� Matrix Cookbook,
http://www2.imm.dtu.dk/pubdb/edoc/imm3274.pdf
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What’s Next

� Probability Calculus, Random Variables, Multi-dimensional
Distributions

� Exponential Family Distributions

� Maximum Likelihood, MAP, Bayesian parameter estimation
principles

� Labs are starting next week! (first one is Sept. 15)
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